



# LD8

Installation and Operations Manual

AB-V-MA-00660\_RevA 16 May 2024





# Contents

| 1 Introduction                                      | 4  |
|-----------------------------------------------------|----|
| 1.1 General information                             | 4  |
| 1.2 LD8 receiver                                    | 4  |
| 1.3 System requirements                             | 4  |
| 1.4 Preamble                                        | 5  |
| 1.5 Veripos Support                                 | 5  |
| 1.6 Activating Veripos correction services          | 6  |
| 1.7 Terms and abbreviations                         | 7  |
| 1.8 Document conventions                            | 9  |
| 1.9 LD8 Notices                                     | 10 |
| 1.10 Disclaimer                                     | 13 |
| 1.11 Equipment care                                 | 14 |
| 2 Hardware overview                                 | 15 |
| 2.1 System overview                                 | 15 |
| 2.2 Connectors, LEDs and I/O ports                  | 16 |
| 2.3 Interface panel connections                     | 18 |
| 3 LD8 installation                                  | 20 |
| 3.1 LD8 schematic example                           | 20 |
| 3.2 Location guidelines                             | 21 |
| 3.3 Mounting                                        | 21 |
| 3.4 Ventilation requirements                        | 22 |
| 3.5 Antenna installation                            | 22 |
| 3.6 Coaxial cable installation                      | 26 |
| 4 Configuration and operation                       | 28 |
| 4.1 Introduction                                    |    |
| 4.2 WebUI status                                    | 29 |
| 4.3 LD8 password                                    | 31 |
| 4.4 LD8 firmware                                    | 32 |
| 4.5 L-band configuration                            | 33 |
| 4.6 Activation and deactivation of Veripos services | 36 |
| 4.7 Calculation configuration                       | 38 |
| 4.8 Ethernet configuration                          | 40 |
| 4.9 Output configuration                            | 42 |
| 4.10 Input configuration                            | 47 |





| 4.11 Rolling log                      |    |
|---------------------------------------|----|
| 4.12 Factory reset                    |    |
| 5 Reference information               | 51 |
| 5.1 Technical specifications          | 51 |
| 5.2 Cabling and connectors            | 53 |
| 5.3 LD8 output sentences              |    |
| 6 Contact information                 |    |
| 6.1 Veripos Support details           | 77 |
| 7 Appendix                            |    |
| 7.1 Summary specification of antennas | 78 |
| 7.2 Summary specification of cabling  | 79 |
| 7.3 L-band coverage map               |    |
|                                       |    |





## **1** Introduction

## **1.1 General information**

To assist with LD8 operation, it will help to have the following items available when consulting this document:

- LD8 and associated equipment shipped to the site.
- A PC or Laptop meeting the system requirements specified below
- The Delivery note provided within the shipment from Veripos.
- Veripos document Antenna and Coaxial Cable Installation.
- LD8 Quick Guides, available from https://veripos.com/support/technical-documents/ld8.
- LD8 FAQs, available from https://help.veripos.com.

## 1.2 LD8 receiver

The LD8 is a high precision system, built into a lightweight, compact and environmentally protected enclosure and designed to operate reliably in the most demanding of marine environments. Key system features:

- Supports decimetre-level multi-constellation positioning with Veripos APEX and Ultra PPP correction services
- Compatible with Veripos Quantum software
- EN60945 Marine Certified
- 555 channels, all constellations, multi-frequency tracking
- Simultaneously track up to three Veripos correction service satellites
- ALIGN® GNSS heading solution
- Supports RTK operations
- Multiple communication interfaces for easy installation
- WebUI configuration utility

## **1.3 System requirements**

This release of LD8 requires a PC or laptop with Windows 7 or Windows 10 installed, capable of running the latest version of Microsoft Edge, Mozilla Firefox or Google Chrome (see individual browser requirements for more information) and an Ethernet port.





#### 1.4 Preamble

The purpose of this manual is to provide the information necessary to install and operate the LD8.

This manual includes the following sections:

- 1. Introduction Details the purpose of the manual, conventions and abbreviations.
- 2. Hardware overview Describes the LD8 interface panel and provides technical data.
- 3. LD8 installation Covers LD8 installation and provides antenna & cabling guidelines.
- 4. Configuration and operation Details system configuration and operations
- 5. Reference information Provides detailed technical specifications.
- 6. Contact information Contains contact information for Veripos Support.
- 7. Appendix Provides additional supplementary material.

## **1.5 Veripos Support**

Veripos Support is a service provided as the first point of contact for all Veripos technical support and fault reports. It is available 24 hours a day, 365 days per year. Full contact details are available in the Contact information section.

For support cases, contact support.veripos@hexagon.com or raise a ticket at https://help.veripos.com. Either method will immediately notify Veripos Support, who will then assist.

Veripos Support will provide initial help and may, if necessary, escalate tickets to regional on-call engineers to provide more in-depth technical support.

To aid support, upon first contact, please provide the following:

- Details of the issue or question
- Vessel name
- Company name
- Telephone number
- Unit user code
- Veripos hardware type
- Veripos software type
- Operating area
- Is this issue holding up operations?
- Any other relevant information





## **1.6 Activating Veripos correction services**

Veripos correction signals are provided on a subscription basis by Veripos.

Activation of the LD8 is necessary for the system to decode corrections and output a corrected position. Users may request activation of services from <a href="mailto:support.veripos@hexagon.com">support.veripos@hexagon.com</a>, who will send the activation signal to the unit via an L-band satellite.

reripos (

When not in use, some service agreements may allow for service deactivation.



## NOTE

To use Veripos correction signals, a contract with Veripos **must** first be in place. Veripos refers to this as a Service Access License (SAL).

To avoid delays, users should record the SAL number associated with the Veripos equipment. Veripos Support is unable to activate any equipment unless an active SAL exists.





## 1.7 Terms and abbreviations

| AC       | Alternating Current                                              |
|----------|------------------------------------------------------------------|
| APEX     | Veripos high accuracy positioning solution                       |
| BEIDOU   | Chinese commissioned GNSS                                        |
| dB       | Decibel                                                          |
| DHCP     | Dynamic Host Configuration Protocol                              |
| DOP      | Dilution of Precision                                            |
| DP       | Dynamic Positioning                                              |
| DQI      | Differential Quality Indicator                                   |
| EU       | European Union                                                   |
| GALILEO  | European commissioned GNSS                                       |
| GLONASS  | GLObal NAvigation Satellite System - Russian commissioned GNSS   |
| GNSS     | Global Navigation Satellite System                               |
| GPS      | Global Positioning System - United States commissioned GNSS      |
| HDOP     | Horizontal Dilution of Precision                                 |
| Hz       | Hertz                                                            |
| ID       | Identification                                                   |
| IP       | Internet Protocol                                                |
| IPv4     | Internet Protocol version 4                                      |
| LAN      | Local Area Network                                               |
| L-band   | Signal transmitted to carry correction data to mobile users      |
| LED      | Light Emitting Diode                                             |
| NMEA     | National Marine Electronics Association                          |
| PDOP     | Positional Dilution of Precision                                 |
| PPP      | Precise Point Positioning                                        |
| PPS      | Pulse Per Second                                                 |
| PRN      | Pseudo Random Noise                                              |
| PSN      | Product Serial Number                                            |
| PWR      | Power                                                            |
| RJ45     | A physical network interface standard used in telecommunications |
| RTCM     | Radio Technical Commission for Maritime Services                 |
| RTK      | Real-Time Kinematic                                              |
| SAL      | Service Access License                                           |
| SBAS     | Satellite Based Augmentation System                              |
| SMA      | SubMiniature version A                                           |
| Standard | Veripos Single frequency DGNSS system                            |
| TCP      | Transmission Control Protocol                                    |
| UAL      | User Accuracy Level                                              |
| UI       | User Interface                                                   |
| Ultra    | Veripos high accuracy position solution                          |





- USB Universal Serial Bus
- UTC Coordinated Universal Time
- VDC Volts Direct Current
- VDOP Vertical Dilution of Precision
- VOSS Veripos Online Support System
- WAAS Wide Area Augmentation System
- WebUI Web User Interface
- WEEE Waste Electrical and Electronic Equipment
- Wi-Fi IEEE 802.11 (wireless) standard



## **1.8 Document conventions**

#### 1.8.1 Typographical conventions

*Italic* or **bold** text is used to emphasize certain information. *Italic* is also used in cross-references to other parts of the document and to other documents.

Bold text is also used for indicators and touch screen "push-buttons" commands.

Blue text is used for hyperlinking to other sections within this document or to external documents or websites.

⁄eripos 🔶

Bold italic text is used when display screens are mentioned in text.

Monospace text is used for input/output strings to/from the device.

#### **1.8.2 Special Notices**



#### WARNING

A warning indicates the risk of bodily harm or serious damage to the hardware.



#### CAUTION

A caution indicates the risk of damaging the hardware or adversely impacting the operation of the system.

## NOTE

A note contains important information to help you make better use of the system.





#### 1.9 LD8 Notices

The following notices apply to the LD8:

#### 1.9.1 Waste electrical and electronic equipment

The Waste Electrical and Electronic Equipment Directive (hereinafter referred to as the "WEEE directive") places an obligation on EU-based manufacturers, distributors, retailers and importers to takeback electronics products at the end of their useful life. A sister directive, RoHS (Restriction of Hazardous Substances) complements the WEEE directive by banning the presence of specific hazardous substances in the products at the design phase. The WEEE directive covers all VERIPOS products imported into the EU as of August 13, 2005. EU-based manufacturers, distributors, retailers and importers are obliged to finance the costs of recovery from municipal collection points, reuse, and recycling of specified percentages per the requirements contained in the WEEE Directive.

#### Instructions for disposal of WEEE by users in the European Union

Products which have the undernoted symbol located on either the product itself or its packaging indicates that the product must not be disposed of with other waste. Instead, it is the user's responsibility to dispose of the product by handing it over to a designated collection point for the recycling of WEEE. The symbol shown below is on the product or on its packaging, which indicates that this product must not be disposed of with other waste. Instead, it is the user's responsibility to dispose of their waste. Instead, it is the user's responsibility to dispose of their waste equipment by handing it over to a designated collection point for the recycling and electronic equipment.

The separate collection and recycling of your WEEE at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about recycling centres, please contact the local city office, the household waste disposal service or the product supplier.







#### 1.9.2 FCC

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

LD8 has been tested and found to comply with the radiated and conducted emission limits for a Class B digital device. The Class B limits are designed to provide reasonable protection against harmful interference in a residential installation.

The equipment listed generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Re-orient or relocate the LD8
- Increase the separation between the equipment and the LD8
- Connect the equipment to an outlet on a circuit different from that to which the LD8 is connected
- Consult Veripos for help



#### CAUTION

To maintain compliance with the limits of a Class B digital device, you must use shielded interface cables.



## WARNING

The LD8 has been authorised for use in mobile applications. At least 20 cm (8 inches) of separation between the LD8 and the User must be maintained during normal operation.



## WARNING

Changes or modifications to this equipment, not expressly approved by Veripos could void the user's authority to operate this equipment.

#### 1.9.2.1 Wi-Fi

The LD8 contains a Wi-Fi radio with the following approval:

• FCC ID: UTU-01019715





## 1.9.3 European Union / United Kingdom (UK)

#### 1.9.3.1 Radio Equipment Directive

Veripos declares that the LD8 including its Wi-Fi transceiver is in compliance with:

- 1. EU Directive 2014/53/EU
- 2. UK Regulations S.1. 2017/1206

The full text of either the UK or EU Declaration of Conformity may be obtained from Veripos upon request.

#### 1.9.3.2 ROHS

The LD8 is in conformity with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.





## 1.10 Disclaimer

Hexagon Autonomy & Positioning division proprietary data

This document and the information contained herein are the exclusive properties of Veripos Limited, and/or their affiliates within the Hexagon Autonomy & Positioning division ("Hexagon").

No part of this document may be reproduced, displayed, distributed, or used in any medium, in connection with any other materials, or for any purpose without prior written permission from Hexagon. Applications for permission may be directed to contact.ap@hexagon.com. Unauthorized reproduction, display, distribution or use may result in civil as well as criminal sanctions under the applicable laws. Hexagon aggressively protects and enforces its intellectual property rights to the fullest extent allowed by law.

This document and the information contained herein are provided AS IS and without any representation or warranty of any kind. Hexagon disclaims all warranties, express or implied, including but not limited to any warranties of merchantability, noninfringement, and fitness for a particular purpose. Nothing herein constitutes a binding obligation on Hexagon.

The information contained herein is subject to change without notice.

© **Copyright 2024** Hexagon AB and/or its subsidiaries and affiliates. All rights reserved. A list of entities within the Hexagon Autonomy & Positioning division is available at https://hexagon.com/company/divisions/autonomy-and-positioning.





## 1.11 Equipment care

This section summarizes safety guidelines when installing the LD8 unit.

#### 1.11.1 Unpacking and inspection

Carefully unpack and inspect the unit. If the equipment appears damaged, then return it using the original packaging. Responsibility for damage will not be accepted if the approved packaging is not used. Ensure all the major items and the ancillary equipment are supplied. If any items are found to be missing, contact the system supplier or Veripos as soon as possible.

## 1.11.2 Safety warnings

Always observe the following safety precautions:

- Always disconnect the LD8 and associated equipment from the power supply when connecting equipment.
- Before replacing a fuse, disconnect the equipment from the power supply.
- · Always use the power connections supplied with the unit.
- Ensure adequate air circulation to ventilate the unit, especially to the sides, to avoid heat build-up.
- Avoid excessive heat, humidity, dust or vibration.
- Never use the equipment in damp or wet conditions.
- Do not use the equipment where it may be subjected to dripping or splashing liquids.
- Disconnect electrical power from the DC power supply.
- Connect only to a power supply with a voltage corresponding to that marked on the unit.

#### 1.11.3 Installation

During installation ensure the following:

- DC power supply is disconnected. The power connection is easily accessed on the unit rear.
- The unit is secured using the holes in the base plate. Position the unit to ensure there is ample spacing for access to the interface panel and adequate ventilation during normal operation.
- All cables are routed safely to avoid sharp edges, bends and pinches.
- Only the cables specified within this manual are used for interconnection of the equipment.

#### 1.11.4 Maintenance

Clean the unit using a clean dry cloth only. Do not wet the unit or allow the penetration of water. Do not use solvents to clean the unit.

#### 1.11.5 Servicing

This unit contains no user-serviceable parts. Please refer all repairs to a qualified service agent or Veripos.

#### 1.11.6 Fault diagnosis

Follow the guidance in this document to correctly install the LD8. Where the LD8 does not perform as indicated firstly check all connections before contacting your supplier or support.veripos@hexagon.com for assistance.





## 2 Hardware overview

This section provides an outline description of the LD8 receiver, detailing the different connectors and LED indicators. It also lists information on the internal GNSS receiver, describes the physical characteristics of the LD8, provides information on the different possible LED statuses, and details the interface panel inputs.

## 2.1 System overview

Encased in a rugged GNSS enclosure, the LD8 can deliver reliable performance in various challenging offshore environments.

- The LD8 is a small, lightweight and low-power system.
- Veripos provide a +9 to +36 VDC power supply with the LD8
- System design allows for easy integration into space and weight-constrained marine applications
- Receives L-band on multiple channels, providing access to worldwide Veripos correction services
- Offers GNSS multi-constellation heading and positioning data for dynamic environments
- The unit incorporates front panel LED indicators for status monitoring
- Configurable via WebUI or Veripos Quantum visualization software







## 2.2 Connectors, LEDs and I/O ports

The LD8 can communicate with other devices, using serial or Ethernet ports.

## 2.2.1 Interface panel

The LD8 interface panel has several connectors for interfacing with the unit:



/eripos 🔶

## 2.2.2 Connector types

| Connector | Label    | Connector<br>type                                               | Description                                                                                                                                                                                                               |  |
|-----------|----------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | ANT 1    | SMA                                                             | Primary GNSS connector. Used for the POSITION reference antenna and the L-band correction signals                                                                                                                         |  |
|           | ANT 2    | SMA                                                             | Secondary GNSS antenna ONLY used for GNSS HEADING systems.                                                                                                                                                                |  |
|           |          | RJ45                                                            | Ethernet network 100 / 1000                                                                                                                                                                                               |  |
|           | СОМ      | USB Micro A/B                                                   | A USB 2.0 port used to communicate from a computer to the receiver using a USB cable                                                                                                                                      |  |
|           | PORTS    |                                                                 | Provides access to communication signals on the receiver. This includes:                                                                                                                                                  |  |
| High      |          | High Density 26<br>pin D-Type                                   | <ul> <li>1 Pulse Per Second output (+3.3 volts pulses)</li> <li>Three bi-directional serial ports</li> <li>COM1 RS-422/RS-232 user selectable</li> <li>COM2 RS-422/RS-232 user selectable</li> <li>COM3 RS-232</li> </ul> |  |
|           | TRANSFER | USB Micro A/B Currently not supported                           |                                                                                                                                                                                                                           |  |
|           | PWR      | SAL M12<br>5 Pin +9 to +36 VDC power input. Multipole connector |                                                                                                                                                                                                                           |  |



## 2.2.3 Serial Ports

The LD8 has three serial ports: COM1, COM2 and COM3, accessible via the High Density 26 pin D-Type connector. Refer to the High Density 26 Pin D-Type connector section for more details.

eripos 🍪

| Port | RS-232 | RS-422 | Flow control |
|------|--------|--------|--------------|
| COM1 | Yes    | Yes    | RTS/CTS      |
| COM2 | Yes    | Yes    | No           |
| COM3 | Yes    | No     | No           |

#### 2.2.4 USB ports

The **COM** USB port is available for data output. The **TRANSFER** USB port is currently not supported and should not be used.

#### 2.2.5 Ethernet

The LD8 has an RJ45 socket that supports 10/100Base-TX Ethernet for interfacing to other IP enabled systems. The Ethernet port supports IPv4 Internet layer.

#### 2.2.6 Power

The systems power input is required to be 9 to 36 Volts DC, using less than 1 Amp at 12 volts operation. On power up there is a 1.5 Amp in-rush (for a 12VDC power supply).

## CAUTION

If the voltage supplied is below the minimum specification, the receiver will automatically shut down.

If the voltage supplied is above the maximum specification, the receiver may be permanently damaged, voiding the warranty.



## CAUTION

The supply must be capable of providing enough current to operate the LD8, including the initial inrush transient. The AC / DC power adapter should be protected with a 6 Amp fuse. The DC supply can be current limited to 6 Amp with an external fuse.





## 2.3 Interface panel connections

This section details the antenna and data connectivity available from the LD8 interface panel.

reripos 🔶

#### 2.3.1 Coaxial

The LD8 interface panel is fitted with two SMA antenna connectors labelled ANT 1 and ANT 2:



Interface panel of LD8 with two GNSS antenna connectors

- The L-band and GNSS position antenna should be connected to the ANT 1 connector.
- Where the LD8 will be used to compute a heading, a second GNSS antenna should be connected to **ANT 2** connector.



**GNSS Heading Solution Direction** 

#### 2.3.2 Data cables

The LD8 System is supplied with a multiport adapter that splits out into cabling for COM1, COM2, COM3 and 1 PPS signal from a 26-pin high-density connector:







## 2.3.3 LEDs

There are five LED indicators used to communicate the receiver status to the user:



| LED         | Description                                                     |
|-------------|-----------------------------------------------------------------|
| 1. TRANSFER | Used for transferring logged data                               |
| 2. GNSS     | Indicates the position status of the receiver.                  |
| 3. LOG      | Indicates the status of logging to the receiver internal memory |
| 4. INS      | Not currently supported                                         |
| 5. PWR      | Indicates the power status                                      |

#### 2.3.4 PWR LED

| State        | Description                                        |
|--------------|----------------------------------------------------|
| Solid green  | Operational mode                                   |
| Solid yellow | In the process of booting                          |
| Solid red    | Error, or update of receiver component in progress |

## 2.3.5 GNSS LED

| State            | Description                                      |
|------------------|--------------------------------------------------|
| Solid green      | PPP (APEX or Ultra) solution                     |
| Slow green blink | RTK                                              |
| Fast green blink | DGNSS (Standard or SBAS) solution or uncorrected |
| Solid yellow     | No solution                                      |

## 2.3.6 LOG LED

| State                          | Description                                                                         |
|--------------------------------|-------------------------------------------------------------------------------------|
| Off                            | LD8 is connected to a computer as a mounted device                                  |
| Green blink                    | Logging to internal memory                                                          |
| Green solid                    | Internal logging stopped                                                            |
| Green/yellow alternating blink | Logging to internal memory with low memory available                                |
| Yellow solid                   | Internal logging stopped with low memory available                                  |
| Yellow fast blink              | Memory is busy                                                                      |
| Red solid                      | Internal memory full and system is utilising a rolling log, or memory has corrupted |



# 3 LD8 installation

HEXAGON

This section provides guidance on the installation of the LD8 receiver. In the event of difficulty contact your supplier or Veripos (https://help.veripos.com).

## 3.1 LD8 schematic example

The schematic shown below is one example of an antenna setup arrangement. Please be aware that other antenna configurations are possible. For long-term installations, always contact to obtain setup drawings specific to your installation, as these may differ from the example below.







## 3.2 Location guidelines

When choosing installation locations, the following requirements should be taken under consideration:

- 1. Ensure adequate ventilation for free air flow to the main unit. This is especially important when working in hot or humid conditions. See section Ventilation Requirements for more details.
- 2. Locate unit in areas free from excessive dust or smoke.
- 3. Avoid locations that experience excessive vibration.
- 4. Avoid exposure to high temperatures.
- 5. Shield the unit from direct sunlight.
- 6. Mount the unit securely to prevent movement.
- 7. Ensure there is easy access to the interface panel.
- 8. Avoid mounting the receiver in confined spaces. Ensure sufficient slack remains in unit cabling to allow the rear of the unit to allow easy access.
- 9. Ensure all bends in coaxial cables are maintained above minimum bend radiuses.
- 10. Use short tails of flexible coaxial cable (e.g. LMR-240). Ensure sufficient strain relief on the main antenna coaxial to avoid stress being placed on coaxial connectors.

## 3.3 Mounting



#### NOTE

Before mounting the LD8 take a note of the system serial number, which typically starts with 'NMPL' and which can be found on the underside of the unit.

Mount the LD8 on a secure, stable surface. The unit can be secured via four M5 mounting holes (imperial size #10), as shown in the figure below. Take care not to overtighten as this will result in damage to the housing. Note that the torque of the screws should not exceed 15 inch-lb.







## 3.4 Ventilation requirements

The LD8 needs 15-25mm clearance all-round to allow an adequate flow of air:



## 3.5 Antenna installation

This section provides general guidance on installation of antennas and cabling. It is important to the ongoing performance of your system that a high-quality installation is performed, as this will ensure optimum performance and reliability.

## NOTE

After equipment installation it is recommended that a calibration survey is carried out to compute the heading offset (also referred to a C-O) and the position offset (Primary GNSS antenna). The position offset and heading offset should be entered within the navigation or DP software.

## 3.5.1 GNSS / L-band antenna installation guidelines

The GNSS antenna receives both multi-constellation and L-band communication satellites (used for Veripos Correction Signals).

This section describes best practice when positioning and installing your GNSS antenna/s.

For more details please refer to Veripos document *Antenna and Coaxial Cable Installation* provided as part of the installation documentation.

Antennas should be located with a clear 360° view of the sky. The best way to ensure this is to mount the antenna at the highest possible location. If the GNSS antenna does not have good satellite visibility, there will be times when system performance is degraded.

#### 3.5 Antenna installation





eripos (

Examples of good installations – Antennas placed at top of mast with good spacing

During installation observe the following additional guidelines:

- Offsets to the GNSS antennas must be measured carefully to ensure that no errors are introduced to the DP, Survey or Navigation systems.
- Care must be taken to ensure that antennas are not installed in the direct path of transmissions from vessel radar, Inmarsat systems, VSAT systems or high-power HF (whip/wire antennas).
- If the antennas cannot be installed directly at the top of the vessel mast or structure, it is essential that the mounting point is sufficiently strong for this purpose. The installation must be able to withstand vibration and wind over a period of many years of operation.
- Stainless steel brackets and mounts are recommended to mitigate the effects of saltwater corrosion.
- A mounting pole can be used with a 5/8"x11 UNC threaded end (standard marine mount). The pole can be attached by welding, or by using "U" clamps as above. This method allows the antenna to be mounted without the need for a bracket.
- Ensure that grease (such as copper slip) is applied to the threads when installing the antenna.
- Fit the antenna to the bracket and clamp the bracket to the mounting pole or the mast by using Uclamps. When mounting the antenna on an extension pole, fit the antenna to the pole first for ease of handling at height.
- If the threaded pole is already installed up the mast, use a small length of coaxial cable attached to the N-type connector as a safety lanyard for the antenna.
- Carefully connect the coaxial cable following manufacturers' guidelines. Form cable below the antenna into a small loop, approximately 150–220 mm (6 to 8 inch) in diameter.
- Attach the loop to the mounting pole under the antenna to provide strain relief from the cable.





#### 3.5.2 Placement for heading antennas

Careful consideration for the placement of the primary and secondary antennas is required to maximise the LD8 GNSS heading accuracy.

#### 3.5.2.1 Antenna separation

The GNSS heading solution accuracy is largely determined by the distance (or baseline) between the primary and secondary antennas. The larger the baseline, the better the heading precision will be.

Under ideal GNSS clear-sky conditions, the accuracy of the GNSS heading solution largely depends on the distance between the primary and secondary antennas. Increasing this baseline improves the heading measurements by facilitating more effective position triangulation, thereby minimizing errors.

The table below shows typical GNSS heading precision values for different baseline lengths. Veripos recommends maintaining a baseline of at least 2m.

| Baseline | GNSS Heading Accuracy (RMS) |
|----------|-----------------------------|
| 2m       | 0.08°                       |
| 4m       | 0.05°                       |
| 10m      | 0.02°                       |

#### 3.5.2.2 Antenna orientation and height

The heading direction is computed from ANT 1 to ANT 2.

Assuming the antennas are mounted along the vessel centreline, with ANT 1 being the furthest forward antenna, the GNSS heading would closely reflect the vessel heading. In the below example, a small heading alignment correction would need to be applied in the navigation system software.



In the next example, Antenna 1 and Antenna 2 are installed perpendicular to vessel North with the Antenna 1 at the Starboard side and Antenna 2 at the Port side. A larger correction offset (C-O) would be required in the navigation system software to align the GNSS heading to vessel North.







## NOTE

The provided examples are simplified for illustration purposes. To achieve optimal heading accuracies a calibration must also be conducted.

Antenna 1 and Antenna 2 should be installed at similar heights to ensure consistent heading. If this is not done the heading solution will be noisy, due to each antenna being subject to different amounts of vessel motion (such as vessel roll):



The effect of vessel motion when antennas (blue) are mounted at different heights





## 3.6 Coaxial cable installation

Veripos can supply pre-terminated LMR type coaxial cables. The LMR cable type has been found to give the best overall technical and cost-effective performance. When cables are supplied by Veripos they will be supplied with 2m tails to allow for connection from main cable run to the antenna and the receiver.

The various GNSS and differential signals will be attenuated at different rates depending on the signal type and the quality of the coaxial cable.

The following table shows the maximum recommended cable length for signal types and for three types of coaxial cable. It is best practice to use lower loss cable, before resorting to the use of inline amplifiers.

|         | L1 GNSS Only   | L1/L2 GNSS     | L-band         |
|---------|----------------|----------------|----------------|
| LMR-400 | 70 m / 229 ft  | 52 m / 170 ft  | 120 m / 393 ft |
| LDF4-50 | 130 m / 426 ft | 110 m / 360 ft | 210 m / 688 ft |
| LMR600  | 110 m / 360 ft | 90 m / 295 ft  | 180 m / 590 ft |

#### 3.6.1 General cable guidance

The Veripos recommended cable for the antenna runs is LMR-400. It is highly recommended that LMR-240 (thinner and more flexible) terminated tails are used at both ends of the LMR-400 cable to ease the attachment to antennas and receiver RF connectors.



Terminated tails of LMR-240

When running multiple coaxial cables Veripos recommend labelling to ensure cables are attached to the correct antennas and equipment.



Survey the route of the antenna cabling to ensure:

1. The total length of the cable run does not exceed the supplied cable length for this installation. Contact your supplier or Veripos if this is the case.

2005

- 2. The cable does not cross or run parallel with any **single phase or three phase mains cable** (110 VAC, 220 VAC or 440 VAC) or any **high-power RF cables** leading to transmitting devices such as Inmarsat and VSAT domes.
- 3. The cable avoids the proximity to fluorescent lighting and wiring.
- 4. The cable is not placed under tension. A **support wire** is used where the cable run has to cross a free space and does not rely solely on cable ties for support.
- 5. Sufficient space is available in the selected cable entry through the bulkhead, for the connectors to pass through without damage. If the connector cannot pass through the cable entry it may be necessary to cut the connector off and re-terminate once the cable has been passed through.
- 6. The cable is **not pinched**.
- 7. The route is **free from all burrs or sharp edges** that could cut the cable jacket over time and lead to water ingress.
- 8. All **connectors and couplers are completely sealed** from the environment with overlapping layers of self-amalgamating tape and finished with layers of electrical tape or Scotchkote.
- 9. **Stress loops** are fitted to prevent excess force on the connectors, in particular on the antenna connectors.
- 10. The minimum bend radius for the cable is not exceeded.





Typical cable installation in a bridge mast area

## 3.6.2 Coaxial cable connection to LD8

The LD8 contains a GNSS receiver capable of tracking L-band. Additionally, a GNSS antenna is required to be connected to Antenna 2 for computation of a valid GNSS heading. Antenna 2 cannot be used for receiving differential corrections or positioning.



Interface panel of LD8 with two GNSS antenna connectors



# 4 Configuration and operation

## 4.1 Introduction

Users may configure the LD8 using Quantum software or the LD8 WebUI. For configurations that require status monitoring of Veripos positioning solutions, refer to the Quantum User Manual. If Quantum is unavailable, users must configure the LD8 through the WebUI, as detailed in this section.

## 4.1.1 Ethernet connection

The LD8 is equipped with Ethernet (10Base-T/100Base-TX) support, ensuring reliable configuration and interfacing with other vessel systems. The Ethernet port supports the IPv4 Internet layer and TCP/IP transport, providing users with a stable and secure connection. A PC or laptop with an Ethernet port and an up-to-date version of Microsoft Edge, Mozilla Firefox, or Google Chrome is required to configure the LD8 for operation. Microsoft Edge comes pre-loaded onto Veripos PCs when issued.

Veripos ship the LD8 with a factory default IP address of 192.168.2.8. Users must configure connecting laptops or PCs to use the same IP subnet. If the LD8 requires configuration to join an existing TCP/IP network, the commands to assist configuration can be found in the section Ethernet configuration.

## 4.1.2 WebUI connection

After establishing network connectivity to the LD8, open a browser and enter the default LD8 IP of 192.168.2.8 into the address bar to load the LD8 WebUI:

| Status                                                                                                                                                                     | nfiguration 🌼                                                                    | Settings 👻             | 🔧 Tools 👻 💷 I                                                                                                                     | Device – 💡 Help 🔸 Login                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vositioning         Warning           losition         RTK         PPP         Si           atitude         57.2013681°         ongltude         -2.1922966°               | ngle<br>Height                                                                   | 114.42 m               | Device Good<br>Model LD8<br>CPU Usage 46%<br>Logging Active                                                                       | Time (UTC) 14:23:07<br>Storage Usage 44%<br>Interference Not Detected                                                                                                                                                                                                                                                                                          |
| Langitude -2.1922966* Positioning Warning⊙ Operating Mode Receive Positioning RTK [PPP Single Latitude -2.1922966* Height 114.42 m Heading 24.66* 2d-SD 0.02 m Datum WG584 |                                                                                  |                        | Logging<br>Active<br>Log File Size<br>Log File Name<br>Messages                                                                   | LGOO<br>1680 KB<br>NMPL1840003N_148.L<br>BDSBCNAVIEPHENERIS<br>BDSECNAVIEPHENERIS<br>BDSECNAVIEPHENERIS<br>BESTFOS<br>BESTFOS<br>GALINAVEPHENERIS<br>GLORAWEPHEN<br>HEADING2<br>IONUTC<br>IDETECTSTATUS<br>LBANDTRACKSTAT<br>LUASTATUS<br>PPPOS<br>RANGE<br>RAVEPHEM<br>RXCONFIG<br>RXSTATUS<br>VERIPOSINFO<br>VERIPOSITATUS<br>VERIPOSITATUS<br>VERIPOSITATUS |
| GFS GLO GAL<br>0 0 0 0                                                                                                                                                     | 8 256 <sup>27</sup><br>5 43 256 <sup>27</sup><br>8 05 Q25 LBAN<br>0 0 0<br>0 0 0 | 27<br>D SBAS<br>0<br>0 | Device<br>CPU Usage<br>Storage Usage<br>Temperature<br>Antenna Voltage<br>Antenna Current<br>Help<br>Interference<br>Not Detected | Cood           46%         Good           44%         Good           63 °C         Good           5.1 V         Good           54.6 mA         Good                                                                                                                                                                                                            |
| Help                                                                                                                                                                       |                                                                                  |                        | and Wheney Providence                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                |





## 4.2 WebUI status

Connecting to the LD8 via Ethernet and loading the WebUI will present the user with the LD8 WebUI *Home > Status* page. This page displays information relating to the status and behaviour of the system. To gain access to any other pages or WebUI functionality, users must use the **Login** option located in the top right-hand corner of the page. To log into the system, locate the LD8 serial number, which typically starts with 'NMPL' and can be found on the underside of the unit. When prompted, use the LD8 serial number as the password and click **Log In**. Changing the password is possible, as detailed in section LD8 password.

| 💋 Status 🛛 荘 Configuration 🔹 Settings 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 💐 Tools 👻 🎫 Device                                                                                  | e 👻 🕜 Help 🔸 Login                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PositioningWarningPositionRTKRTKPPPSingleLatitude57.2013681°Height114.42 mLongitude-2.1922966°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Device Good<br>Model LD8<br>CPU Usage 46%<br>Logging Active                                         | Time (UTC) 14:23:07<br>Storage Usage 44%<br>Interference Not Detected                                                                                                                                                                                                                                                                                                                                                                           |
| Positioning       Warning⊙         Operating Mode       Receive         Positioning       RTK         Positioning       RTK         Latitude       57.2013681°         Longitude       -2.1922966°         Height       114.42 m         Heading       24.66°         2d-SD       0.02 m         Datum       WGS84         Image: Provide the state of the stat | Logging<br>Active<br>Log File Size<br>Log File Name<br>Messages                                     | 1680 KB<br>NMPL18400003N_148.L<br>BDSBCNAV1EPHEMERIS<br>BDSBCNAV3EPHEMERIS<br>BDSEPHEMERIS<br>BESTPOS<br>BESTSATS<br>GALFNAVEPHEMERIS<br>GALFNAVEPHEMERIS<br>GALINAVEPHEMERIS<br>GALINAVEPHEMERIS<br>GALINAVEPHEMERIS<br>GLORAWEPHEM<br>HEADING2<br>IONUTC<br>ITDETECTSTATUS<br>LBANDTRACKSTAT<br>LUASTATUS<br>PPPOS<br>RANGE<br>RAWEPHEM<br>RXCONFIG<br>RXSTATUS<br>VERIPOSINFO<br>VERIPOSINFO<br>VERIPOSTATUS<br>VERIPOSTATUS<br>VERIPOSTATUS |
| AORW     30     2527     27       2     2527     2527     2527       GPS     GLO     GAL     BDS     QZSS       10     6     8     8     0     2       0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Device<br>CPU Usage<br>Storage Usage<br>Temperature<br>Antenna Voltage<br>Antenna Current<br>W Help | Good           46%         Good           44%         Good           63 °C         Good           5.1 V         Good           54.6 mA         Good                                                                                                                                                                                                                                                                                             |
| О Неір                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Interference<br>Not Detected                                                                        | Good                                                                                                                                                                                                                                                                                                                                                                                                                                            |





## 4.2.1 WebUI Status page items

At the top of the page is a summary bar containing system information. Below this, the main body of the LD8 WebUI *Home > Status* page splits into several boxes, with each box containing system information:

| Item           | Description                                                                                                                                                                                                                                                                                                         |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Positioning    | Information relating to the operating mode, calculated position type, latitude, longitude, height, heading (if available), 2d-SD and datum.                                                                                                                                                                         |
| Satellite View | A polar plot showing currently tracked satellites. As shown on the right, clicking on any satellite will reveal elevation, azimuth and signal strength information for that satellite. Highlighted below the plot are the numbers of satellites used in the solution (green), unused (orange), and unhealthy (red). |
| Ports          | Information regarding available ports. Highlights which ports are configured for input (and/or) output, as well as which are available and in use (green), available but idle (orange).                                                                                                                             |
| Logging        | The system logging status. Includes present log file size, the name of the currently logging item and which messages are being logged.                                                                                                                                                                              |
| Device         | Present CPU and storage usage, temperature, antenna voltage and current.                                                                                                                                                                                                                                            |
| Interference   | Highlights detected interference.                                                                                                                                                                                                                                                                                   |
| Heading        | Heading and pitch information, and baseline length.                                                                                                                                                                                                                                                                 |

## 4.2.2 Sending commands via WebUI terminal

Users logged into the LD8 may configure the system by using terminal commands. The WebUI provides a terminal window through which commands and status information from the unit can be sent and received. Access the WebUI terminal by clicking on **Tools** on the top bar then **Terminal**.

An entered command may be sent to the unit using the Return/Enter key on the keyboard. They will appear in the Terminal in green, with echoed responses from the LD8 appearing in black.







Sending commands will trigger one of three different responses from the LD8:

#### Status response

When requesting system status information, such as querying which L-band beam/s are presently being tracked, the LD8 should respond with an '<OK' echo, followed by the requested information.

#### Acknowledgement response

When successfully making a configuration change a single or multiple line response containing `<OK>' can be expected.

#### **Rejection of command**

A rejected command will be flagged as such with 'INVALID MESSAGE' or 'ERROR' appearing somewhere within the echoed response, or no response will be received. These responses indicate that a command has not been understood, or that a command has not been successfully implemented.

#### 4.2.3 Saving changes

Whilst configuring the LD8 via the WebUI terminal, any configuration changes made will not get automatically saved. Although any configuration changes made may appear to immediately work, **without the use of a save command these changes will be lost in the event of a power cycle**. One command is used for saving network changes and another command is used for saving all other changes. Once either of the below commands has been sent an acknowledgement response should be received:

| Command          | Description                                          |
|------------------|------------------------------------------------------|
| SAVEETHERNETDATA | Saves any Ethernet configurations                    |
| SAVECONFIG       | Saves all settings excluding Ethernet configurations |

#### 4.3 LD8 password

To login to the system users will need to locate the LD8 serial number, which typically starts with 'NMPL' and can be found on the underside of the unit or in the Log File Name on the WebUI Status page. Before proceeding with mounting or configuration of the LD8, users may wish to change the password from the LD8 serial number default.

#### 4.3.1 LD8 password configuration via terminal

The LD8 password can be changed via the terminal.

The LD8 password can be changed from one password (such as LD8 serial number) to a new one by entering:

SETADMINPASSWORD OLDPASSWORD NEWPASSWORD

To change the LD8 password back to the LD8 serial number enter:

FRESET USER ACCOUNTS





#### 4.4 LD8 firmware

To verify the present firmware on the LD8, send the below command:

LOG VERSION

The following information will appear in the terminal program. The firmware version has been highlighted:

```
GPSCARD "FDDRYNTVEA" "DMMU205000412" "OEM7720-1.01"
"OM7CR0814RN0000 OEM7FPGA """OMV070001RN0000" "" DEFAULT_CONFIG ""
""""EP7CD0814RN0001" "" "2022/Oct/13" "15:43:41 APPLICATION """"
"EP7PR0814RN0000" "" "2022/Oct/13" "15:43:35" PACKAGE "" "" ""
"EP7PR0814RN0000" "" "2022/Oct/13" "15:43:38" DB_LUA_SCRIPTS
"SCRIPTS" "Block1"" "SaM_4.1.0.4" "" "2022/Oct/10" DB_WWWISO
"WWWISO" "O" "" "1.9.0" "" "2022/Aug/08" "16:44:47" ENCLOSURE
"PWRPAK7D-E1" "NMPM21030008J" "" ww WIFI "RS9113" "" """1.7.12" ""
```





## 4.5 L-band configuration

Tracking of an L-band beam is required to receive Veripos service correction and activation data. This section will detail how to establish and confirm successful L-band tracking to make use of Veripos services. **Auto Beam is the recommended way to manage L-band beam choices**. When in this mode, the LD8 will track up to three beams simultaneously with tracking determined based on available L-band satellites and elevation and data received from each L-band satellite used within the calculation.

Using Auto Beam can mitigate against the impact of a single beam failure or masking. Additionally, when using Auto Beam and transiting across different geographic regions, the LD8 will automatically select available L-band beams. Whilst in this mode no manual beam selection is required.

The receiver also allows for selection of a single L-band beam. If a single beam is selected, it will disable the Auto Beam selection. Veripos have five beams available as detailed below and, in most regions, more than one beam should be available. A global map with a beam overlay can be found in the Appendix, however the below table can be used as a general guide:

| Beam Name | Coverage                                                                                    |
|-----------|---------------------------------------------------------------------------------------------|
| 98W       | North America, Gulf of Mexico, South America                                                |
| AORW      | North America, Gulf of Mexico, South America, North Sea, West Africa                        |
| 25E       | North Sea, Mediterranean Sea, Africa, Persian Gulf, Caspian Sea                             |
| IOR       | Asia, Australasia, Indian Ocean, East Africa, Persian Gulf, Caspian Sea, East Mediterranean |
| 143.5     | Asia, Australasia, Indian Ocean                                                             |

Where possible, different Veripos receiver units on the same vessel should be set to different beams to maximise redundancy.

## 4.5.1 Selecting beam via WebUI

To select Auto beam (or a single beam if required) navigate to **Configuration > Positioning** and click **Receive (Rover)**, followed by **Next**. On the next page expand the **PPP** section and select either Auto or an available beam, followed by **Apply**:

| New Operating Mode F     | Receive (Rover) |    |       |   |
|--------------------------|-----------------|----|-------|---|
| Select correction type(s | NA Input ports  | NA |       | ÷ |
| PPP Region Selection     | O AORW          |    | ) 25E | ^ |
| () 143.5E                | Q 98W           |    |       |   |
| SBAS Region Selecti      | ion NA          |    |       | * |





#### 4.5.2 Selecting Auto beam via terminal

To enable the use of Auto beam enter the following:

ASSIGNLBANDBEAM AUTO

#### 4.5.3 Selecting a single beam via terminal

The format for assigning a specific L-band beam (98W, AORW, 25E, IOR, 143.5) is as follows:

ASSIGNLBANDBEAM BEAMNAME

#### 4.5.4 Entering a custom beam frequency via terminal

A custom L-band beam name and frequency (in Hz) can be manually entered, however this should be used only under the instruction of Veripos Support. The format for assigning a user L-band beam is as follows:

ASSIGNLBANDBEAM MANUAL BEAMNAME FREQUENCY 1200

#### 4.5.5 Tracked L-band beam and signal strength status via terminal

The presently tracked L-band beam/s and signal strength/s can be found by entering:

#### LOG LBANDTRACKSTAT

The returned status will display information relating to any of the beams that are being actively tracked or searched for. The tracked L-band beam names will be found in quotation marks at the start of each line, i.e. "25E". The value after the beam name relates to the L-band beam frequency followed by the baud rate, which is typically 1200 bps. The signal strength will be found in the 8th field along for each beam line. Signal strengths are output in dB and a value of 36.5dB or above is optimal.

When in Auto beam mode the terminal output will be similar to the below:

```
LBANDTRACKSTAT WCOM1_30 0 50.5 FINESTEERING 2062 457753.000
0a000020 29e3 15441
3
"IOR" 1545865000 1200 974c 00c2 0 -91.416 43.052 3.6091 15658.910
298176 2330
746 38166528 290966 0.0000
"25E" 1545825000 1200 974c 00c2 0 -223.267 43.704 3.8057 78985.820
1504384 5 5 192561152 515 0.0000
"AORW" 1545845000 1200 974c 00c2 0 -280.645 40.858 2.8379 78986.523
1504448 607 571 192569344 68081 0.0015
```





#### 4.5.6 HDR mode configuration via terminal

Enabling HDR mode can assist with L-band tracking when potential interference sources are present. HDR Mode uses signal processing to dampen potential sources of RF distortion, at the cost of increased CPU usage. It is recommended that if any L-band tracking issues are observed (intermittent, low or no signal) this option is enabled.

HDR mode can be enabled by entering:

ITFRONTENDMODE LBAND HDR

HDR mode can be disabled by entering:

ITFRONTENDMODE LBAND CIC3





## 4.6 Activation and deactivation of Veripos services

To activate or deactivate Veripos services, firstly ensure that the LD8 is switched on and tracking an L-band beam with a healthy signal level (>36.5 dB). Tracking of a L-band beam is required as activation and deactivation updates are sent via the beam.

Email Veripos Support (support.veripos@hexagon.com) with the Unit ID, Vessel Name, SAL number and services required.

## NOTE

Veripos Support cannot enable services unless an active SAL exists. To avoid delay, please make sure that the SAL number is known and available prior to requesting services.

## 4.6.1 Checking unit activation status via terminal

To check the present activation status of an LD8 enter:

```
LOG VERIPOSSTATUSA
```

The unit activation status can be either ENABLE (or) DISABLE.

The unit L-band sync status can be either LOCKED (or) NO\_SIGNAL. For activation of Veripos services the unit is required to have a sync status of LOCKED. Refer to section L-band configuration for assistance on selecting an L-band beam if required.

An example of a status message response, with activation status showing DISABLE and Sync status LOCKED:

```
VERIPOSSTATUSA, WCOM1, 0, 67.0, FINESTEERING, 2040, 375008.267, 02008020, 0
719,14970; DISABLE, LOCKED*00439ce3
```

## 4.6.2 Checking unit ID and activation service code via terminal

If in doubt as to the LD8 unit ID and/or the activation service code enter the following:

LOG VERIPOSINFO

The LD8 unit ID is required for Veripos to activate services and each activation/deactivation is unique to each unit ID. The activation service code can be used to determine what services the unit is activated to receive.




In the below terminal output, the unit has been successfully activated and the unit ID has been highlighted, followed by the service activation code:

veripos 🤅

VERIPOSINFO WCOM1 0 66.0 FINESTEERING 2039 314993.573 02008020 2bd7 14970 <123456 NCC CONTROLLED 80000111 "2"

In the below terminal output the unit has not yet been activated. The unit ID has been highlighted and no value yet exists for the service activation code:

```
VERIPOSINFO WCOM1 0 66.5 FINESTEERING 2040 378378.140 03008020 2bd7
14970 <123456 UNASSIGNED 00000000 ""
```

# NOTE

While a unit may be enabled for single PPP services it may not be fully utilising the service as further configuration may be required to choose which Veripos PPP service to use (APEX or ULTRA).





# 4.7 Calculation configuration

There are several calculation configuration options which can be changed by the use of commands. These configuration options can update the way in which Veripos service types are utilised.

## 4.7.1 PPP mode selection via terminal

The two PPP solutions that Veripos offer, Ultra and APEX, allow for decimetre accuracy positioning. Each of these services have no range limitations and can be used in any location.

Some Veripos service codes include both the APEX and Ultra solutions. On systems with corrections subscriptions that include both Ultra and Apex, it is recommended that users set the LD8 to prioritise Apex, and automatically fall back to Ultra should Apex become unavailable:

PPPSOURCE AUTO

If only one PPP solution is enabled users may configure the LD8 to use the activated service. Users should ensure that the solution selected matches the service requested from support. The format for assigning a specific solution (APEX or ULTRA) is as follows:

PPPSOURCE APEX

# NOTE

Changing the PPPSSOURCE will re-initialise the PPP calculation, which will take time to settle before a PPP solution output becomes available.

# 4.7.2 SBAS configuration via WebUI

The LD8 is capable of tracking and using correction data from Satellite Based Augmentation Systems (SBAS). If SBAS is enabled a SBAS DGNSS solution will be output in the event of Veripos solutions failure.

To enable/disable SBAS navigate to **Configuration > Positioning** and click **Receive (Rover)**, followed by **Next**. On the next page expand tick the **SBAS** box to enable SBAS. then select region (**Auto** is recommended). Click **Apply** to confirm any changes.

| New Operating Mode    | Receive (Rover) |          |        |   |
|-----------------------|-----------------|----------|--------|---|
| Select correction typ | pe(s)           |          |        |   |
| RTK Input Form        | nat NA Input    | ports NA |        | × |
| PPP Region Se         | lection Auto    |          |        | ~ |
| SBAS                  |                 |          |        | ^ |
| Region Selection      |                 |          |        |   |
| Auto                  | O EGNOS         | ◯ GAGAN  | O MSAS |   |
| 0.075                 | Owner           |          |        |   |





### 4.7.3 SBAS configuration via terminal

The LD8 SBAS mode can be enabled or disabled via the terminal.

The SBAS positioning mode can be enabled by entering:

SBASCONTROL ENABLE AUTO

The SBAS positioning mode can be disabled by entering:

SBASCONTROL DISABLE

### 4.7.4 Heading offset and output frequency via WebUI

The Heading can be turned on or off from the **Heading** switch. The heading offset and the heading output rate can be configured within the WebUI by navigating to **Configuration > Heading**. The heading offset value can be set between -180o and +180o. The output rate can be set between 1Hz and 20Hz (this does not apply to the HDT output message). Click **Apply** to confirm any changes.

| pe                 |          |         |                 |    |  |
|--------------------|----------|---------|-----------------|----|--|
| Onboard            | O Serial |         |                 |    |  |
| Onboard            |          |         |                 |    |  |
| Heading Offset (de | grees)   | Pitch O | (fset (degrees) |    |  |
| 0.00               |          | 0.00    |                 |    |  |
| Heading Output Ra  | ite (Hz) |         |                 | _  |  |
|                    | -        |         | 0               | 20 |  |

### 4.7.5 Heading offset and output frequency via terminal

A heading offset and the heading output rate can also be configured via terminal. The heading offset value can be set between -180° and +180°. The heading offset can be added by entering:

HEADINGOFFSET HEADINGOFFSETINDEG

The output rate can be set between 1Hz and 20Hz (this does not apply to the HDT output message). The last value of the LOG message is the output rate field (1 = 1Hz, 0.5 = 2Hz, 0.2 = 5Hz, 0.1 = 10Hz, 0.05 = 20 Hz). The output rate can be set by entering:

```
LOG COM1 GPHDTDUALANTENNA ONTIME 1
```





# 4.8 Ethernet configuration

Network connectivity to the LD8 is essential for configuration and implementing changes. The following sub-sections detail how to check and change the present IP address settings.

# 4.8.1 IP configuration via WebUI

IP addresses can be checked and configured by navigating to **Settings > Networking**. Within the **Ethernet** Window, the DHCP setting can be toggled to Off or On. Toggling DHCP to Off will allow for Static IP address details to be input. Note the Wi-Fi related features are unavailable at present.

| Vi-Fi D                   | Ethernet                   |              | Wi-Fi Hotspot               |              |
|---------------------------|----------------------------|--------------|-----------------------------|--------------|
| 1997-9999 - 2000 - 4<br>1 | IP Address<br>10.17.43.245 |              | 11                          |              |
|                           | Subnet Mask                |              | Name<br>PwrPak7-NMPL1840000 | JSN          |
|                           | 255.255.255.0              |              | Password                    |              |
|                           | Gateway                    |              |                             | Ø            |
|                           | 10.17.43.1<br>@ Help       | Cancel Apply | Help                        | Cancel Apply |
|                           |                            |              |                             |              |
|                           |                            |              |                             |              |
|                           |                            |              |                             |              |
|                           |                            |              |                             |              |
|                           |                            |              |                             |              |



# 4.8.2 Checking IP and subnet status via terminal

To check the current IP settings of the LD8 enter the command below:

LOG IPSTATUSA ONCE

IP and subnet settings will be returned, proceeded by ETHA, within quotation marks as highlighted below:

```
IPSTATUSA,WCOM1_
30,0,65.0,FINESTEERING,2043,203989.000,02008020,7fe2,14970;2,ETHA,
"192.168.1.123"
,"255.255.255.0","192.168.1.1",WIFI,"192.168.19.1,"255.255.255.0","
",1,"0.0.0.0"*d9d1437c
```





### 4.8.3 Setting a static IP via terminal

The LD8 is preconfigured with a static IP of 192.168.2.8, however this IP address can be changed to a different static IP address. The command to change to a static IP follows the structure of:

```
IPCONFIG [interface_name] [address_mode] [IP_address] [netmask]
[gateway]
```

′eripos 🔶

An example for this:

IPCONFIG ETHA STATIC 192.168.2.8 255.255.255.0 192.168.2.1

When configured for a static IP address the LD8 does not have a DNS server configured and cannot resolve host names. To configure a DNS server entry, use the DNSCONFIG command:

DNSCONFIG 1 8.8.8.8

### 4.8.4 Changing IP to DHCP via terminal

The LD8 can be assigned an IP address via DHCP. If changing to DHCP use the IPSTATUSA command to determine the newly assigned IP address.

# CAUTION

Changing the IP address mode to DHCP will require verification of any newly assigned IP address, which must be performed through connection to one of the three COM ports.

To automatically assign a dynamic IP to the LD8 use the below command:

IPCONFIG ETHA DHCP

To change the unit back to a static IP, follow the instructions in the above 'Setting a static IP via terminal' section.





# 4.9 Output configuration

The LD8 is capable of outputting Veripos RTCM data and a selection of message formats via the following:

eripos 💮



- Serial outputs are available for reference within commands or selected in the WebUI by using 'COM1', 'COM2' and 'COM3'.
- **TCP/IP** output can be established to one of five ports: 3001, 3002, 3003, 3004 and 3005. These are available for reference within commands or selected in the WebUI by using 'ICOM1', 'ICOM2', 'ICOM3', 'ICOM4' and 'ICOM5' respectively. Only one connection can be established to each port.
- **USB** outputs are available for reference within commands or selected in the WebUI by using 'USB1', 'USB2' and 'USB3'. Only one connection can be established to each port.

The available LD8 message types and the associated command variable to use when referencing each type within the WebUI or terminal are shown below:

| Message        | Command variable          |
|----------------|---------------------------|
| GGA            | GPGGA                     |
| GST            | GPGST                     |
| ZDA            | GPZDA                     |
| GSA            | GPGSA                     |
| GSV            | GPGSV                     |
| GLL            | GPGLL                     |
| VTG            | GPVTG                     |
| GRS            | GPGRS                     |
| RMC            | GPRMC                     |
| HDT            | GPHDTDUALANTENNA          |
| TRINAV V3*     | VERIPOSTRINAVVERSION V3 1 |
| TRINAV V4*     | VERIPOSTRINAVVERSION V4 1 |
| VERIPOS UKOOA* | VERIPOSUKOOASENTENCE      |
| BESTPOS        | BESTPOS                   |

\*Selection of TRINAV or UKOOA is only possible using the terminal.



### 4.9.1 Configuring message outputs via WebUI

Navigate to **Configuration > Ports**, where configuration of **COM 1-3**, **ICOM 1-5** and **USB 1-3** ports is available. Using command variables to specify message type, enter the appropriate command variable next to the required COM, ICOM or USB port in the **Messages** field. Select the command variable once it appears in the **Messages** field as shown below and then click **Apply** to confirm settings.

/eripos 🔶

| orts       |   |       |         |               |                                                  |    |
|------------|---|-------|---------|---------------|--------------------------------------------------|----|
| iut Format |   | Port  |         | Output Format | Messages                                         |    |
| ONE        | • | COM1  | \$<br>* | NMEA          | GGALONG O                                        | \$ |
| OVATEL     | • | COM2  | \$<br>• | NMEA          | ▼ Start typing the message name                  |    |
| OVATEL     | ¥ | COM3  | \$<br>• | NOVATEL       | ✓ Start typing the message name                  |    |
| OVATEL     | • | ICOM1 | \$<br>• | NMEA          | ▼ Start typing the message name                  |    |
| OVATEL     | Ŧ | ICOM2 | \$<br>• | NMEA          | ▼ Start typing the message name                  |    |
| OVATEL     | Ŧ | ICOM3 | \$<br>* | NMEA          | ▼ Start typing the message name                  |    |
| OVATEL     | ¥ | ICOM4 | \$<br>• | NMEA          | ▼ Start typing the message name                  |    |
| OVATEL     | ¥ | ICOM5 | \$<br>• | NMEA          | ▼ Start typing the message name                  |    |
| DVATEL     | Ŧ | USB1  | •       | NONE          | ▪ To add messages, first choose an output format |    |
| OVATEL     | Ŧ | USB2  | •       | NOVATEL       | ✓ Start typing the message name                  |    |
| OVATEL     | • | USB3  | •       | NOVATEL       | ▼ Start typing the message name                  |    |
|            |   |       |         |               |                                                  |    |

To remove any message outputs, click on the '⊗' appearing next to the Command variable and click **Apply**.

### 4.9.2 Specifying baud rate via WebUI

To specify a baud rate for COM Ports 1, 2 or 3 navigate to **Configuration > Ports** click on the cog wheel within the **Port** field:

| Input Format |   | Port |         | Output Format |   | Messages                                       |   |           |
|--------------|---|------|---------|---------------|---|------------------------------------------------|---|-----------|
| NOVATEL      | • | COM1 | \$<br>• | NONE          | * | To add messages, first choose an output format | ( | $\otimes$ |

A window will open that will allow for a baud rate of **2400**, **4800**, **9600**, **19200**, **38400**, **57600**, **115200**, **230400** or **460800** to be selected. The parity, Data bits and Stop Bits can also be selected. Once these and the appropriate baud rate have been selected, click on **Done** followed by **Apply**.

| Baud Rate   |  |
|-------------|--|
| 9600 👻      |  |
| Parity      |  |
| ● N ○ E ○ O |  |
| Data Bits   |  |
| 07 08       |  |
| Stop Bits   |  |
|             |  |
|             |  |
|             |  |



### 4.9.3 Message output rate via WebUI

Once a NovAtel command variable has been specified a cog wheel will appear within the right hand corner of the **Messages** field:

′eripos 🔶

| Input Format |   | Port |         | Output Format |   | Messages                                       |           |
|--------------|---|------|---------|---------------|---|------------------------------------------------|-----------|
| NOVATEL      | * | COM1 | \$<br>• | NONE          | * | To add messages, first choose an output format | $\otimes$ |

Clicking on the settings cog will open a **Message Settings** window where an output rate can be specified in the Period field. LD8 receivers are capable of outputting messages at rates of **1Hz**, **2Hz**, **5Hz**, **10Hz** and **20Hz**. Enter the required rate in seconds as per table below and click **Apply**:

| Message S  | Settings |    |        |            |         |     |        | >     |
|------------|----------|----|--------|------------|---------|-----|--------|-------|
| NMEA Log P | refix    |    |        |            |         |     |        |       |
| ⊖ gp       | () AU    | то |        |            |         |     |        |       |
| BeiDou Log | Prefix   |    |        |            |         |     |        |       |
| ⊖ gb       | O BD     |    |        |            |         |     |        |       |
| Precision  |          |    |        | Quality In | dicator |     |        |       |
| <b>0</b> 5 | 0 6      | 07 | 8      | 2          | 0 5     |     |        |       |
| Message    |          |    | Format |            | Trigger |     | Period |       |
| GGA        |          |    |        |            | ONTIME  | *   | 1      | S     |
|            |          |    |        |            |         |     |        |       |
|            |          |    |        |            |         |     |        |       |
|            |          |    |        |            |         |     |        |       |
|            |          |    |        |            |         |     |        |       |
|            |          |    |        |            |         | Can | cel 4  | кррту |

### 4.9.4 Enabling message outputs via terminal

To enable a message, a single command must be sent for each message on each port. Message types can be output on **COM 1-3**, **ICOM 1-3**, or **USB 1-3**. This, along with the message command variable, should be entered in the command line. The command to be used is given below with COM1 and GPGGA used as an example:

LOG COM1 GPGGA ONTIME 1

LD8 receivers are capable of outputting messages at rates up to 20Hz. The last value as part of the LOG message is the output rate field. See below table for the output rates and the command variables:

| Output rate | Command variable |
|-------------|------------------|
| 1Hz         | 1                |
| 2Hz         | 0.5              |
| 5Hz         | 0.2              |
| 10Hz        | 0.1              |
| 20Hz        | 0.05             |

An example of the command for outputting GGA on COM 1 at 20Hz:

LOG COM1 GPGGA ONTIME 0.05





### 4.9.5 Disabling message outputs via terminal

To disable a message from being output, the command below should be issued to the unit. This consists of the command required, the port and the message type:

UNLOG COM1 GPGGA

To stop all output messages on a single port, the command below can be issued stating the port:

UNLOGALL COM1

### 4.9.6 Setting GGA precision selection via terminal

It is possible to configure the number of decimal places used in the Latitude and Longitude fields output in the GGA Message. The precision can be set to 5, 6, 7 or 8. When changing the precision value, the same value should be applied to both the Longitude and Latitude. The command requires to state GGA\_LATITUDE or GGA\_LONGITUDE, followed by a precision value detailed in the table below:

| Precision | Latitude command             | Longitude command             |
|-----------|------------------------------|-------------------------------|
| 5         | NMEAFORMAT GGA_LATITUDE 10.5 | NMEAFORMAT GGA_LONGITUDE 11.5 |
| 6         | NMEAFORMAT GGA_LATITUDE 11.6 | NMEAFORMAT GGA_LONGITUDE 12.6 |
| 7         | NMEAFORMAT GGA_LATITUDE 12.7 | NMEAFORMAT GGA_LONGITUDE 13.7 |
| 8         | NMEAFORMAT GGA_LATITUDE 13.8 | NMEAFORMAT GGA_LONGITUDE 14.8 |

### 4.9.7 Setting PPP DQI via terminal

When using either Apex or Ultra PPP services the Differential Quality Indicator is a value reported within GGA messages to indicate solution status. The LD8 allows for two configurable behaviours for this value.

| DQI behavior                                                                    | Command variable |
|---------------------------------------------------------------------------------|------------------|
| When the calculation is converged to a service the DQI will report the value 2. | PPP 2            |
| When the calculation is converged to a service the DQI will report the value 5. | PPP 5            |

The below command example shows the behaviour of the DQI when converged for PPP to a value of 2. The highlighted area below is where the variable of 2 or 5 should be set:

GGAQUALITY 4 OUT OF BOUNDS 2 WAAS 2 PPP 2 PSRDIFF 2

### 4.9.8 Setting baud rates via terminal

The LD8 allows for each Serial Port to be set at different baud rates. The following baud rates are available to be set: 2400, 4800, 9600, 19200, 38400, 57600,115200, 230400 or 460800

To set the baud rate the SERIALCONFIG command should be used along with the port name for the desired change. An example of the command is below, with the port and baud rate highlighted:

SERIALCONFIG COM1 9600 N 8 1 N OFF





# 4.9.9 Setting PPS via terminal

The LD8 allows for the PPS polarity to be configured and set to an increase in pulse from 0v (POSITIVE) or a decrease in pulse to 0v (NEGATIVE). The pulse has a width of 2000 microseconds.

An example of the PPSCONTROL command is given below which shows the pulse being set to POSITIVE:

PPSCONTROL ENABLE POSITIVE

PPS output can be disabled by sending the following:

PPSCONTROL DISABLE

### 4.9.10 Enabling RAIM Mode via terminal

Receiver autonomous integrity monitoring (RAIM) is a technology developed to assess the integrity of GNSS signals used by a GNSS receiver. RAIM uses redundant signals and a statistical function to determine if there are problems with the positioning solution; in simple terms, RAIM acts as an internal self-check. RAIM is enabled by default. Do not disable RAIM unless advised by Customer Support.

The present state of RAIM may be verified by sending the below:

LOG RAIMMODE

This command will return the RAIM status. In the below highlighted example RAIM is enabled (VERIPOS) rather than disabled (DISABLE):

```
<RAIMMODE WCOM1_30 0 67.0 FINESTEERING 2301 466554.107 02000000
e186 17190
< VERIPOS 0.000 0.000 0.0000000</pre>
```

RAIM Mode can be enabled by sending the following:

RAIMMODE VERIPOS

RAIM Mode can be disabled by sending the following:

RAIMMODE DISABLE

### 4.9.11 Enabling Veripos RTCM output via terminal

Veripos RTCM can be output on any of the LD8 serial COM ports. Within the terminal window enter the commands below where updating COM1 with the desired output COM port number.

UNLOGALL COM1 INTERFACEMODE COM1 NONE RTCM OFF LOG COM1 VERIPOSRAWRTCMDATAB ONNEW

To change the baud rate of the serial port, send command below. COM should be the same COM port as used in the initial step and the field 9600 replaced with the appropriate baud rate.

SERIALCONFIG COM1 9600 N 8 1 N ON





# 4.10 Input configuration

The LD8 is capable of utilising corrections from external sources of Veripos RTCM (RTCM v2, RTCM v3 or CMR) and RTK correction data. For RTK solutions the position will be output in the datum of the correction source.

# 4.10.1 Inputting external Veripos RTCM via terminal

To input external corrections, you must issue two commands to the unit. These two commands will configure the required baud rate of input and then set the port for decoding of Veripos RTCM data. These commands are SERIALCONFIG and INTERFACEMODE.

The example commands below show configuration of COM1 for input of Veripos RTCM data, with a baud rate of 115200:

SERIALCONFIG COM1 115200 N 8 1 N OFF INTERFACEMODE COM1 VERIPOS RTCM NOVATEL ON

# NOTE

The LD8 is preconfigured to receive **RTK** corrections. Only port and interface mode settings need to be applied.





# 4.11 Rolling log

# 4.11.1 Viewing rolling log via WebUI

The LD8 is preconfigured to utilise a rolling data log. This data can be used to conduct various types of analysis or for troubleshooting purposes by Veripos. From this data, RINEX observation logs can be generated, if required. If RINEX data is required, please contact Veripos Support.

The Logging Status, current logged file's size and name in addition to the logged messaged are presented on the **Home > Status** page of the WebUI:

| Logging       | Good                |
|---------------|---------------------|
| Active        |                     |
| Log File Size | 4086 KB             |
| Log File Name | NMPL18400003N_2.LOG |
| Messages      | ALMANAC             |
|               | BDSEPHEMERIS        |
|               | BESTPOS             |
|               | BESTSATS            |
|               | GALINAVEPHEMERIS    |
|               | GLORAWEPHEM         |
|               | HEADING2            |
|               | ITDETECTSTATUS      |
|               | LBANDTRACKSTAT      |
|               | LUASTATUS           |
|               | PORTSTATS           |
|               | PPPPOS              |
|               | QZSSEPHEMERIS       |
|               | RANGE               |
|               | RAWEPHEM            |
|               | RXCONFIG            |
|               | RXSTATUS            |
|               | VERIPOSINFO         |
|               | VERIPOSRTCMDATA     |
|               | VERIPOSSTATUS       |
|               | VERSION             |





# 4.11.2 Downloading logs

Hourly-separated logs can be found within **Device > Export**. Each log file will be displayed with a date, time stamp and also the file size. As the rolling log builds up there may be multiple pages of stored logs.

To download logs, an FTP transfer utility such as FileZilla needs to be used. Launch FileZilla then connect to the LD8 using its IP address as Host, "admin" for the Username and the LD8 serial number for the password and press Quickconnect. This should establish a connection with the LD8 and will show the logged files in the right bottom panel of the FileZilla. Drag the required files to the appropriate folder on your PC which can be selected in the left bottom panel of FileZilla.

If requested to provide logs by Veripos Support, ensure that the logs cover the period that needs analysing plus 3 hours prior to the event and 1 hour after.

| 🛃 admin@10.17.43.133 - FileZilla                                                                                                                      |                           |                            | - 0 ×                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-------------------------------------------|
| File Edit View Transfer Server Bookmarks Help                                                                                                         |                           |                            |                                           |
| 温・ BTTTT C BO なし F Q 9                                                                                                                                |                           |                            |                                           |
| Host: 10.17.43.133 Usemane: admin Password                                                                                                            | Port Quickoo              | w Iber                     |                                           |
| Status: Insecure server, it does not support FTP over TLS.<br>Status: Server does not support non-ASCII characters.<br>Status: Logged in              |                           |                            | ^                                         |
| Status: Starting download of /NMPL18400003N_2022-06-21,<br>Status: Starting download of /NMPL18400003N_2022-06-21,                                    | 03-13-14.LOG              |                            |                                           |
| Status: File transfer successful, transferred 25,278,231 bytes in                                                                                     | 1 21 seconds              |                            |                                           |
| Local site:                                                                                                                                           | - Remote site: /          |                            | Ŷ                                         |
| <ul> <li>₩ 3 41147</li> <li>₩ 3 41167</li> <li>₩ 4186</li> <li>₩ 4429</li> <li>₩ 0xis</li> <li>- 3 0xis</li> <li>- 0 0515</li> <li>- 14129</li> </ul> | System                    | Volume Information         |                                           |
| Filoname                                                                                                                                              | Filesi Elename            | Ÿ                          | Filesize Filetuce Lastmod, Permis, (A     |
| <b>1</b>                                                                                                                                              | III NMPL1840000           | 3N 2022-06-21 06-13-15.LOG | 25.406.669 Text D., 21/06/19, -rworw,     |
| NMPL18400003N_2022-06-21_03-13-14LOG                                                                                                                  | 25.278.2:     NMPL1840000 | IN 2022-06-21_05-13-15.LOG | 25,878,339 Text D., 21/06/19, -rworw.,    |
|                                                                                                                                                       | III NMPL1840000           | IN,2022-06-21_04-13-15.LOG | 24,658,307 Text D., 21/06/79, -rworw.,    |
|                                                                                                                                                       | NMPL1840000               | IN_2022-06-21_03-13-14.00G | 25,278,231 Text D., 21/06/19., -rworw., i |
|                                                                                                                                                       | 10 NMPL1840000            | JN_2022-06-21_02-13-14LOG  | 25.133.109 Text D., 21/06/19., -rworw., i |
|                                                                                                                                                       | III NMPL1840000           | 3N_2022-06-21_01-13-13.LOG | 24,581,379 Text D., 21/06/19, -restruct a |
|                                                                                                                                                       | NMPL1840000               | JN_2022-06-21_00-13-12.LOG | 24,814,264 Text D., 21/06/19,, -rworw,, i |
|                                                                                                                                                       | 10 NMPL1840000            | JN_2022-06-20_23-13-11.LOG | 24,599,585 Text D., 20/06/19., -rworw., ( |
|                                                                                                                                                       | III NMPL1840000           | 3N,2022-06-20,22-13-11.LOG | 25,056,272 Text D., 20/06/19, -rworw., 1  |
|                                                                                                                                                       | NMPL1840000               | 3N_2022-06-20_21-13-10.LOG | 25.243.853 Text D., 20/06/19, -rworw., (* |
| ¢                                                                                                                                                     | > <                       |                            | >                                         |
| 1 file. Total size: 25,278,231 bytes                                                                                                                  | Selected 1 file. Tot      | l size: 25,278,231 bytes   |                                           |
| ServeyLocal file Dire Remote file                                                                                                                     |                           | Size Prio Status           |                                           |
| Queued files Faled transfers Successful transfers (1)                                                                                                 |                           |                            |                                           |
|                                                                                                                                                       |                           |                            | On Queux empty                            |





# 4.12 Factory reset

Users can perform a factory reset to revert the LD8 to default factory settings; however, only under the advice of Veripos Support should this be undertaken. Once complete, it is necessary to reconfigure COM and ICOM ports by connecting via a PC to the LD8 USB Micro A/B COM port:



# 4.12.1 Factory resetting via terminal

Users may perform a factory reset by issuing the case-sensitive command:

LUA START factoryreset.lua

After sending the LUA START factoryreset.lua command, the ICOM and serial ports will need to be set up again. Connect a USB cable to the LD8 USB Micro A/B COM port from a PC, which may require installing the appropriate USB drivers.

To configure the ports:

- 1. Go to Configuration >Ports
- 2. Click on the '+' button at the bottom right corner.
- 3. Set up serial COM 1–3 and ICOM 1–5 as shown in the example below:

| and the man | Part   |   | Output Format | Managen |    |
|-------------|--------|---|---------------|---------|----|
| NOVATEL     | COM3 1 | ٥ | NMEA          | CCA 0   | \$ |
|             |        |   |               |         |    |

If the port is to be visible but not actually outputting, set the Input and Output formats to 'Novatel' to enable two-way communication with the card.

Click **Apply** when the setup is complete.



# **5** Reference information

# 5.1 Technical specifications

# 5.1.1 Dimensions in mm



# 5.1.2 Mechanical specifications

The LD8 is sealed to the IPX7, IP6X & IP67 specifications.

Equipment complies with **EN60945** Protected Equipment - 4th Edition.

# 5.1.3 Compass safe distance

Conforms to IEC 60945.

# 5.1.4 Enviromental specifications

| Operating temperature range: | -40°C to +75°C     |
|------------------------------|--------------------|
| Storage temperature range:   | -40°C to +85°C     |
| Maximum relative humidity:   | 95% non-condensing |





# 5.1.5 Safety considerations

Though the test conditions for the LD8 unit provide for a maximum operating temperature of +75  $^{\circ}$ C, continuous operation of all electronic components should, if possible, take place at ambient temperatures of only +25  $^{\circ}$ C.

/eripos 🔶

## 5.1.6 Electrical specifications

| Voltage:           | +9 to +36 VDC                                                   |
|--------------------|-----------------------------------------------------------------|
| Power consumption: | 3.95W typical, all constellations, all frequencies, plus L-band |

# NOTE

These are typical values using serial ports without interference mitigation. These values can change with the number of satellites in view, firmware version, data logging rates and features in use. Use them as a guide for what you might expect, but not as absolute values

Inrush current:

1.5 A for less than 1.3 ms (@ 12 V; typical)



# 5.2 Cabling and connectors

# 5.2.1 Power cable

| KEY          | J1 pinout M12 | Label on lead |
|--------------|---------------|---------------|
|              | 1             | -VIN          |
|              | 2             | +VIN_A        |
|              | 3             | +VIN_B        |
|              | 4             | -VIN          |
| PIN 4— 1.110 | 5             | Chassis GND   |

# 5.2.2 High Density 26 Pin D-Type connector

| DIN | Description |       |       |  |  |  |  |
|-----|-------------|-------|-------|--|--|--|--|
| PIN | Function    | RS232 | RS422 |  |  |  |  |
| 1   | COM1        | RTS   | TX-   |  |  |  |  |
| 2   | COM1        | ТХ    | TX+   |  |  |  |  |
| 3   | COM1        | RX    | RX+   |  |  |  |  |
| 4   | COM1        | CTS   | RX-   |  |  |  |  |
| 10  | COM2        | ТΧ    | TX+   |  |  |  |  |
| 11  |             | GND   |       |  |  |  |  |
| 12  | COM2        |       | RX-   |  |  |  |  |
| 13  | COM3        | ΤX    |       |  |  |  |  |
| 14  |             | GND   |       |  |  |  |  |
| 17  |             | GND   |       |  |  |  |  |
| 19  | COM2        |       | TX-   |  |  |  |  |
| 20  | COM2        | RX    | RX+   |  |  |  |  |
| 21  | COM3        | RX    |       |  |  |  |  |
| 24  | PPS @ 3.3V  |       |       |  |  |  |  |

The 26-way high density D-type connector pin diagram is shown below (view looking into connector):





# 5.2.3 I/O cable

The interfacing cable connects to the high density 26 pin D-type connector which splits to three 9 pin D-type connectors (female) and a BNC female. The three comport connectors are configured as standard RS232 9-pin connections (DCE).

/eripos 🔶







# 5.3 LD8 output sentences

This section outlines the structure of the following message output types:

- GGA
- GST
- ZDA
- GSA
- VTG
- GSV
- GLL
- GRS
- RMC
- HDT
- TRINAV
- Veripos UKOOA
- BESTPOS / BESTGPSPOS

### 5.3.1 NMEA talker IDs

The NMEA talker identifier serves to define the nature of the data being transmitted. The talker is the first two characters after the \$ sign within the NMEA sentence. As the LD8 is capable of utilising more than only the GPS constellation, the talker has a set value for each constellation. For sentences where the data relates to multiple constellations the ID '**GN**' will be found.

Not all NMEA sentences will have a variable talker ID (the GGA and ZDA will be fixed with **GP**) however all other NMEA messages will have a variable talker.

Note that the talker ID is determined by the constellation/s in use and cannot be changed to another value.

The table below shows the talker IDs and the represented constellation:

| Talker ID | Constellation           |
|-----------|-------------------------|
| GP        | GPS                     |
| GL        | GLONASS                 |
| GA        | Galileo                 |
| BD        | BeiDou                  |
| GN        | Multiple Constellations |





### 5.3.2 GGA sentence

The NMEA GGA sentence contains time and position fix related data for a GPS system. It includes basic quality information, which is limited to 'Fix Quality', 'Number of Satellites in Use', 'HDOP' and 'Age of Corrections'.

/eripos 🔶

#### GGA sentence structure & example

| \$GPGGA, | hhmmss.ss, | ddmm.mmmm,  | a, | dddmm.mmmmm, | b, | q, | XX, | p.p, | a.b,   | >M, | c.d,  | Μ, | х.х,  | nnnn | *hh |
|----------|------------|-------------|----|--------------|----|----|-----|------|--------|-----|-------|----|-------|------|-----|
| \$GPGGA, | 123519.00, | 4807.03787, | N, | 01131.00547, | Е, | 1, | 15, | 0.9, | 545.4, | Μ,  | 46.9, | Μ, | 14.0, | 0281 | *47 |

#### **GGA** sentence defined

| Field       | Content                                                                                                                                                             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGA         | Global Positioning System Fix data                                                                                                                                  |
| hhmmss.ss   | UTC of position                                                                                                                                                     |
| ddmm.mmmmm  | Latitude of position                                                                                                                                                |
| а           | N or S, latitude hemisphere                                                                                                                                         |
| dddmm.mmmmm | Longitude of position                                                                                                                                               |
| b           | E or W, longitude hemisphere                                                                                                                                        |
| q           | GPS Quality indicator (0 = invalid, 1 = GPS SPS, 2 = DGNSS fix, 4 = Fixed RTK, 5 = Float RTK / PPP, 6 = Dead Reckoning), 7 = Manual Input Mode, 8 = Simulation Mode |
| хх          | Number of satellites in use                                                                                                                                         |
| p.p         | HDOP (Horizontal dilution of precision)                                                                                                                             |
| a.b         | Antenna altitude above/below mean-sea-level                                                                                                                         |
| М           | Units of antenna altitude, meters                                                                                                                                   |
| c.d         | The relationship between the geoid and the WGS84 ellipsoid                                                                                                          |
| М           | Units of meters                                                                                                                                                     |
| x.x         | Age of differential GNSS data                                                                                                                                       |
| nnnn        | Differential reference station ID, 0000 to 1023                                                                                                                     |
| *hh         | Checksum                                                                                                                                                            |
| [CR][LF]    | Sentence Terminator                                                                                                                                                 |

# 

The number of decimal places in the GGA message Latitude and Longitude values is configurable, see section Setting GGA precision selection via terminal for details. If making changes from five decimal places the sentence will no longer conform with NMEA v3.01.





### 5.3.3 GST sentence

The NMEA GST sentence provides error statistics of the position fix. These statistics follow from the position calculation process.

veripos 🔶

#### **GST** sentence structure & example

\$GNGST, hhmmss.ss, a.aa, b.bb, c.cc, d.dddd, e.ee, f.ff, g.gg \*hh \$GNGST, 024603.00, 1.47, 0.11, 0.07, 28.3688, 0.10, 0.08, 0.16 \*58

#### **GST** sentence defined

| Field     | Content                                                                                                                                                  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| GST       | Estimated error in position solution                                                                                                                     |
| hhmmss.ss | UTC time in hours, minutes, seconds of the GPS position                                                                                                  |
| a.aa      | RMS value of the standard deviation of the range inputs to the navigation process. Range inputs include pseudo-ranges and differential DGNSS corrections |
| b.bb      | Standard deviation of semi-major axis of error ellipse (meters)                                                                                          |
| C.CC      | Standard deviation of semi-minor axis of error ellipse (meters)                                                                                          |
| d.dddd    | Orientation of semi-major axis of error ellipse (meters)                                                                                                 |
| e.ee      | Standard deviation of latitude error (meters)                                                                                                            |
| f.ff      | Standard deviation of longitude error (meters)                                                                                                           |
| g.gg      | Standard deviation of altitude error (meters)                                                                                                            |
| *hh       | Checksum                                                                                                                                                 |
| [CR][LF]  | Sentence terminator                                                                                                                                      |





# 5.3.4 ZDA sentence

The NMEA ZDA sentence provides time and time zone information.

#### ZDA sentence structure & example

\$GPZDA, hhmmss.ss, dd, mm, yyyy, null, null \*hh \$GPZDA, 201530.00, 04, 07, 2019, , , \*6E

#### ZDA sentence defined

| Field     | Content                                                 |
|-----------|---------------------------------------------------------|
| ZDA       | Time and Date data                                      |
| hhmmss.ss | UTC time in hours, minutes, seconds of the GPS position |
| dd        | Day, 01 to 31                                           |
| mm        | Month, 01 to 12                                         |
| уууу      | Year                                                    |
| null      | Local zone hours (not available)                        |
| null      | Local zone minutes (not available)                      |
| *hh       | Checksum                                                |





### 5.3.5 GSA sentence

The NMEA GSA sentence provides time and time zone information.

#### **GSA** sentence structure & example

veripos 🔶

#### **GSA** sentence defined

| Field | Content                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSA   | GNSS DOP and Active Satellites                                                                                                                              |
| а     | Mode (M = Manual mode, forced to operate in 2D or 3D mode,<br>A = Automatic mode, allowed to automatically switch 2D/3D)                                    |
| b     | Fix (1 = Not available, 2 = 2D, 3 = 3D)                                                                                                                     |
|       | PRN ID numbers of satellites used in solution a total of 12 fields                                                                                          |
|       | GPS = 1 to 32                                                                                                                                               |
| сс    | GLONASS = 65 to 96<br>As shown in the above example, if less than 12 satellites for one constellation are used null<br>values will be output in the string. |
| d.d   | PDOP                                                                                                                                                        |
| e.e   | HDOP                                                                                                                                                        |
| f.f   | VDOP                                                                                                                                                        |
| hh    | Checksum                                                                                                                                                    |





# 5.3.6 VTG sentence

The NMEA VTG sentence provides the actual course and speed relative to the ground.

#### VTG sentence structure & example

\$GNVTG, ppp.ppp, T, qqq.qgg, M, rr.rrr, N, ss.sss, K, U, \*hh \$GNVTG, 167.608, T, 167.608, M, 0.006, N, 0.012, K, D, \*3D

#### VTG sentence defined

| Field   | Content                                                         |
|---------|-----------------------------------------------------------------|
| VTG     | Course over ground and ground speed                             |
| ppp.ppp | True course over ground                                         |
| т       | Degrees True indicator                                          |
| qqq.qgg | Magnetic course over ground                                     |
| Μ       | Degrees Magnetic                                                |
| rr.rrr  | Speed over ground, knots                                        |
| N       | Nautical speed indicatior (N = Knots)                           |
| SS.SSS  | Speed over ground, kilometres/hour                              |
| К       | Speed indicator (K = km/hr)                                     |
| 11      | Positioning mode indicator (A = Autonomous, D = Differential,   |
| 0       | E = Estimated (Dead reckoning), M = Manual, N = Data not valid) |
| *hh     | Checksum                                                        |





### 5.3.7 GSV sentence

The NMEA GSV sentence provides information relating to the number of satellites (SV) in view, satellite ID numbers, elevation, azimuth, and SNR value in one sentence.

/eripos 🔶

#### **GSV** sentence structure & example

\$GPGSV, a, b, cc, dd, ee, fff, gg, dd, ee, fff, gg, dd, ee, fff, gg, dd, ee, fff, gg, \*hh, \$GPGSV, 4, 1, 13, 02, 10, 043, 41, 05, 05, 103, 38, 10, 04, 238, 42, 12, 13, 030, 44, \*7E, (Satellite 1) (Satellite 2) (Satellite 3) (Satellite 4)

#### **GSV** sentence defined

| Field | Content                                                                |
|-------|------------------------------------------------------------------------|
| GSV   | GNSS Satellites in view                                                |
| а     | Total number of sentences (1-9)                                        |
| b     | Sentence number (1-9)                                                  |
| сс    | Total number of satellites in view, within the talker ID constellation |
|       | Satellite ID number                                                    |
| dd    | GPS = 1 to 32                                                          |
|       | GLONASS = 65 to 96                                                     |
| ee    | Elevation, degrees (90° maximum)                                       |
| fff   | Azimuth, degrees true, 000 to 359                                      |
| gg    | SNR (C/No) 00-99 dB-Hz, null when not tracking                         |
| hh    | Checksum                                                               |



### NOTE

Fields dd, ee, fff and gg will be repeated a maximum of 4 times per sentence, where all satellite info is already output null values will be output.



# 5.3.8 GLL sentence

The NMEA GGL sentence provides Latitude and Longitude position data for the present position.

veripos🔶

#### GLL sentence structure & example

| \$GNGLL, | ddmm.mmmmmm,  | a, | dddmm.mmmmmm,  | b, | hhmmss.ss, | S, | I | *hh |
|----------|---------------|----|----------------|----|------------|----|---|-----|
| \$GNGLL, | 5708.7104685, | N, | 00217.1169613, | W, | 062859.00, | Α, | D | *72 |

#### GLL sentence defined

| Field         | Content                                                         |
|---------------|-----------------------------------------------------------------|
| GLL           | Geographic position - Latitude and Longitude                    |
| ddmm.mmmmmmm  | Latitude of position                                            |
| а             | Latitude direction (N or S)                                     |
| dddmm.mmmmmmm | Longitude of position                                           |
| b             | Longitude direction (E or W)                                    |
| hhmmss.ss     | UTC time of position                                            |
| S             | Status (A = data valid ; V = data not valid)                    |
| 1             | Positioning mode indicator (A = Autonomous, D = Differential,   |
|               | E = Estimated (Dead reckoning), M = Manual, N = Data not valid) |
| *hh           | Checksum                                                        |





### 5.3.9 GRS sentence

The NMEA GRS sentence provides range residuals for each satellite.

#### **GRS** sentence structure & example

veripos 🔶

#### **GRS** sentence defined

| Field     | Content                                                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GRS       | GNSS range residuals                                                                                                                                                        |
| hhmmss.ss | UTC time of position                                                                                                                                                        |
| а         | Mode (0 = Residuals were used to calculate the position given in the matching GGA or GNS sentence 1 = Residuals were recomputed after the GGA or GNS position was computed) |
| b.b       | Range residuals for satellites used in the navigation solution. Order matches order of PRN numbers in GPGSA.                                                                |
| сс        | GNSS System ID (see tables below for further explanation).                                                                                                                  |
| dd        | Ranging Signal ID (see tables below for further explanation).                                                                                                               |
| *hh       | Checksum                                                                                                                                                                    |

|                    | GNSS Constellation: GPS |        |         |         |       |       |  |  |  |  |
|--------------------|-------------------------|--------|---------|---------|-------|-------|--|--|--|--|
| GNSS System ID:    | 1 (GP)                  |        |         |         |       |       |  |  |  |  |
| Signal Channel:    | All Signals             | L1 C/A | L1 P(Y) | L2 P(Y) | L2C-M | L2C-L |  |  |  |  |
| Ranging Signal ID: | 0                       | 1      | 2       | 3       | 4     | 5     |  |  |  |  |

|                    |             | GNSS Constellation: GLONASS |               |        |      |  |  |  |  |  |  |  |
|--------------------|-------------|-----------------------------|---------------|--------|------|--|--|--|--|--|--|--|
| GNSS System ID:    |             |                             | <b>2</b> (GL) |        |      |  |  |  |  |  |  |  |
| Signal Channel:    | All Signals | L1 C/A                      | L1 P          | L2 C/A | L2 P |  |  |  |  |  |  |  |
| Ranging Signal ID: | 0           | 1                           | 2             | 3      | 4    |  |  |  |  |  |  |  |

|                    |             | GNSS Constellation: Galileo |     |       |      |       |  |  |  |  |  |
|--------------------|-------------|-----------------------------|-----|-------|------|-------|--|--|--|--|--|
| GNSS System ID:    |             | <b>3</b> (GA)               |     |       |      |       |  |  |  |  |  |
| Signal Channel:    | All Signals | E5a                         | E5b | E5a+b | E6-A | E6-BC |  |  |  |  |  |
| Ranging Signal ID: | 0           | 0 1                         |     | 3     | 4    | 5     |  |  |  |  |  |

|                    | GNSS Constellation: BeiDou |        |     |     |      |      |     |     |     |  |
|--------------------|----------------------------|--------|-----|-----|------|------|-----|-----|-----|--|
| GNSS System ID:    |                            | 4 (BD) |     |     |      |      |     |     |     |  |
| Signal Channel:    | All Signals                | B1I    | B1C | B1A | B2-a | B2-b | B3I | B3Q | B3A |  |
| Ranging Signal ID: | 0                          | 1      | 3   | 4   | 5    | 6    | 8   | 9   | А   |  |



### 5.3 LD8 output sentences

|                    |             | GNSS Constellation: QZSS |         |         |       |       |  |  |  |  |  |
|--------------------|-------------|--------------------------|---------|---------|-------|-------|--|--|--|--|--|
| GNSS System ID:    |             | <b>5</b> (GQ)            |         |         |       |       |  |  |  |  |  |
| Signal Channel:    | All Signals | L1 C/A                   | L1C (D) | L1C (P) | L2C-M | L2C-L |  |  |  |  |  |
| Ranging Signal ID: | 0           | 1                        | 2       | 3       | 5     | 6     |  |  |  |  |  |





# 5.3.10 RMC sentence

The NMEA RMC sentence provides essential GPS PVT (position, velocity, time) data.

#### **RMC** sentence structure & example

| \$GNRMC, | hhmmss.ss, | a, | ddmm.mmmmmmm, | b, | dddmm.mmmmmmm, | с, | dd.ddd, | eee.e, | ddmmyy  | f.f, | g, | h | *hh |
|----------|------------|----|---------------|----|----------------|----|---------|--------|---------|------|----|---|-----|
| \$GNRMC, | 143909,    | А, | 5107.0020216, | N, | 11402.3294835, | W, | 0.036,  | 348.3, | 210307, | 0.0, | Е, | D | *31 |

#### **RMC** sentence defined

| Field         | Content                                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| RMC           | Recommended Minimum Sentence C                                                                                          |
| hhmmss.ss     | UTC time of position                                                                                                    |
| а             | Position status (A = Active V = Void)                                                                                   |
| ddmm.mmmmmmm  | Latitude of position                                                                                                    |
| b             | Latitude direction (N or S)                                                                                             |
| dddmm.mmmmmmm | Longitude of position                                                                                                   |
| с             | Longitude direction (E or W)                                                                                            |
| dd.ddd        | Speed over the ground, knots                                                                                            |
| eee.e         | Course over ground, degrees True                                                                                        |
| ddmmyy        | Current date                                                                                                            |
| fff.f         | Magnetic variation, degrees                                                                                             |
|               | Magnetic variation direction E/W                                                                                        |
| g             | Easterly variation (E) subtracts from True course.                                                                      |
|               | Westerly variation (W) add to True course.                                                                              |
| h             | Mode indicator (A = Autonomous, D = Differential, E = Estimated (dead reckoning), M = Manual input, N = Data not valid) |
| *hh           | Checksum                                                                                                                |





# 5.3.11 HDT sentences (V3 & V4)

The NMEA HDT sentence provides heading information derived from the receiver.

#### HDT sentence structure & example

\$GNHDT, dd.dddd, T hh \$GNHDT, 75.5664, T \*36

### HDT sentence defined

| Field   | Content                |
|---------|------------------------|
| HDT     | Heading (true) message |
| dd.dddd | Heading in degrees     |
| т       | Degrees True           |
| *hh     | Checksum               |





# 5.3.12 TRINAV sentences (V3 & V4)

#### **TRINAV** version 3 sentence example

[WGPOS,3,1,OEM7VERI,APEX5,OM7MR0702AN0006,1041,392609.00,0.0,57 12.08207N,002 11.53782W,114.421,0.7,1.2,,0.005948,0.000899,0.004640,0.030111,0.14,3,1,3,16,0,1,8,10,11,14,20,2 2,27,28,32,65,66,67,73,81,82,]

#### **TRINAV** version 3 sentence defined

| Field                    | Content | Unit | Notes                                                |
|--------------------------|---------|------|------------------------------------------------------|
| Start character          | A6      | [-]  | \$WGPOS                                              |
| Format version           | I       | [-]  | = 3 for this version                                 |
| Nav. point no.           | I       | [-]  | See comment 1                                        |
| System name/version      | А       | [-]  | Name + version of DGPS system. See comment 2         |
| GPS week number          | I       | [-]  | GPS week no. since April 6 2019                      |
| GPS time of fix          | F10.2   | [s]  | Seconds into GPS week (GPS time).                    |
| Age of fix               | F4.1    | [s]  | See comment 3                                        |
| Latitude                 | A13     | [dm] | dd mm.mmmmmN, space between D and M                  |
| Longitude                | A14     | [dm] | dd mm.mmmmmE, space between D and M                  |
| Height                   | F7.3    | [m]  | Antenna height above ellipsoid. See comment 4        |
| HDOP                     | F5.1    | [-]  | Horizontal dilution of position                      |
| VDOP                     | F5.1    | [-]  | Vertical dilution of position                        |
| Unit variance            | F9.3    | [m2] | See comment 5                                        |
| Variance latitude        | F10.6   | [m2] | See comment 5                                        |
| Covariance lat/long      | F10.6   | [m2] | See comment 5                                        |
| Variance longitude       | F10.6   | [m2] | See comment 5                                        |
| Variance height          | F10.6   | [m2] | See comment 5                                        |
| External reliability     | F7.2    | [m]  | See comment 6                                        |
| Fix status               | I       | [-]  | See comment 7                                        |
| Computation type         | I       | [-]  | See comment 8                                        |
| Correction type          | I       | [-]  | See comment 9                                        |
| No. of satellites (n)    | I       | [-]  | No. of satellites used for this fix                  |
| No. of ref. stations (r) | I       | [-]  | No. of ref. stations used for fix. See comment 10    |
| PRN's of sats. used      | l*n     | [-]  | Satellites used for this fix. Separated by commas    |
| Ref. station idents      | l*n     | [-]  | Ref. stations used for this fix. Separated by commas |
| End character            | A1      | [-]  | Close string                                         |
| CRLF                     | A2      |      |                                                      |





#### **TRINAV** version 3 definitions commentary

1. The "Nav point no." is a unique integer identifying the position. It should be manually entered into the software according to requests from Positioning Engineers. Alternatively, this should start from 1 and be incremented if several positions are output from the same system.

eripos

- 2. The system name should identify the system (or contractor) and software version (e.g. "SEADIFF 2.1" or "MFIX 1.2.3").
- 3. The "Age of fix" is the time of the first character of the data string being output to WesternGeco's positioning system minus the time of position.
- 4. WGS84 ellipsoid and datum must be used. The height must be antenna height above the WGS84 ellipsoid.
- 5. The variance and covariance terms are elements from the variance-covariance matrix of the position fix computation (un-scaled).
- 6. The external reliability is the maximum positional effect of an undetectable error in an observation. This quantity is related to the power of the test (the probability that the MDE would be detected) and the significance level used.
  - 1. The values recommended by UKOOA should be used (see UKOOA Guidelines for the use of Differential GPS in offshore surveying, Issue no. 1, Sept. 1994) i.e. a significance level of test 1% and the power of the test 80%.
  - 2. If values other than those given above are used, this must be explicitly stated by the contractor.
- 7. TRINAV V3 fix status codes:

| Status code | Meaning                                       |
|-------------|-----------------------------------------------|
| 0           | No or bad fix                                 |
| 1           | Altitude aiding (Weighted height used in fix) |
| 2           | Altitude hold (2D fix)                        |
| 3           | 3D fix                                        |
| 4           | 3D fix INS aided                              |
| 5           | INS only (dead reckoning)                     |

8. TRINAV V3 computation type codes

| Type code | Meaning                                                     |
|-----------|-------------------------------------------------------------|
| 0         | No corrections                                              |
| 1         | Single frequency DGNSS                                      |
| 2         | Dual frequency DGNSS                                        |
| 3         | PPP (satellite orbit and clock corrections)                 |
| 4         | PPP-AR (ambiguity resolution) using phase bias information. |
| 5         | Other                                                       |

9. TRINAV V3 source codes:

| Type code | Meaning                                                             |
|-----------|---------------------------------------------------------------------|
| L         | L-band only, always followed by 1 (i.e. L1)                         |
| М         | L-band multi-channel, followed by number of links tracked (e.g. M3) |
| 1         | Internet source, always followed by 0 (i.e. I0)                     |
| 0         | Other, always followed by 0 (i.e. O0)                               |

10. "No. of ref. stations" gives the number of reference stations in use for this fix, not the number of stations available. This field must be set to 0 if the fix is not differential.





#### **TRINAV** version 4 sentence example

[WGPOS,4,1,OEM7VERI,APEX5,OM7MR0702AN0006,1041,396729.00,0.0,57 12.08195N,002 11.53806W,113.340,0.7,0.9,,0.285460,0.009316,0.156003,0.663714,1.33,3,2,G,R,1,0,0,0,1,M3,IOR,2 5E,AORW,18,2,G01,G03,G08,G10,G11,G14,G17,G18,G22,G28,G32,R02,R03,R09,R11,R17,R18,R19 ,777,706,]

#### **TRINAV** version 4 sentence defined

| Field                            | Content | Unit | Notes                                                                                                                                              |
|----------------------------------|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Start character                  | A6      | [-]  | \$WGPOS                                                                                                                                            |
| Format version                   | I       | [-]  | = 4 for this version                                                                                                                               |
| Nav. point no.                   | I       | [-]  | See comment 2                                                                                                                                      |
| System                           | А       | [-]  | Application name and version, space separated e.g.<br>Quantum 3.0.0.0                                                                              |
| Service level                    | А       | [-]  | Highest enabled service permitted e.g. APEX Pro                                                                                                    |
| Version                          | А       | [-]  | Firmware version as reported by the GNSS card e.g. OEM060700SN0062                                                                                 |
| GPS week number                  | I       | [-]  | GPS week no. since April 6 2019                                                                                                                    |
| GPS time of fix                  | F10.2   | [s]  | Seconds into GPS week (GPS Time).                                                                                                                  |
| Age of fix                       | F4.1    | [s]  | This field indicates the age of the solution as reported by the GNSS card, based on the time between receiving measurements and generating output. |
| Latitude                         | A13     | [dm] | dd mm.mmmmmN, space between D and M                                                                                                                |
| Longitude                        | A14     | [dm] | ddd mm.mmmmmE, space between D and M                                                                                                               |
| Height                           | F7.3    | [m]  | Antenna height above ellipsoid. See comment 3                                                                                                      |
| HDOP                             | F5.1    | [-]  | Horizontal dilution of position                                                                                                                    |
| VDOP                             | F5.1    | [-]  | Vertical dilution of position                                                                                                                      |
| Unit variance                    | F9.3    | [m2] | See comment 4                                                                                                                                      |
| Variance latitude                | F10.6   | [m2] | See comment 4                                                                                                                                      |
| Covariance lat/long              | F10.6   | [m2] | See comment 4                                                                                                                                      |
| Variance longitude               | F10.6   | [m2] | See comment 4                                                                                                                                      |
| Variance height                  | F10.6   | [m2] | See comment 4                                                                                                                                      |
| External reliability             | F7.2    | [m]  | See comment 5                                                                                                                                      |
| Fix status                       | I       | [-]  | See comment 6                                                                                                                                      |
| Constellations in fix (c)        | I       | [-]  | Number of constellations used in the computation                                                                                                   |
| Identifiers of<br>constellations | A*c     | [-]  | Constellation character based on RINEX format (G-GPS, R-GLONASS, E-Galileo, C-BeiDou, J-QZSS)                                                      |
| GNSS frequency                   | I       | [-]  | Number of GNSS frequencies used in the computation (i.e. single frequency, dual frequency, triple frequency)                                       |



veripos 🔶

| Field                                       | Content | Unit | Notes                                                                                                                                 |
|---------------------------------------------|---------|------|---------------------------------------------------------------------------------------------------------------------------------------|
| PPP-AR                                      | I       | [-]  | Phases biases used or not to perform ambiguity resolution.<br>Value of 1 indicates a PPP-AR solution, 0 it is not.                    |
| Atmospheric<br>corrections                  | I       | [-]  | Use of external atmospheric corrections in computation<br>Value of 1 shows it has atmospheric correction applied, 0 it<br>hasn't.     |
| GNSS<br>integrity/Authentication<br>message | I       | [-]  | External information used as an integrity check on GNSS broadcast data. Value of 1 shows it has been used, 0 it hasn't.               |
| Correction type                             | I       | [-]  | See comment 7                                                                                                                         |
| Correction source(s)                        | A2      | [-]  | See comment 8                                                                                                                         |
| Names of correction<br>links                | A*s     | [-]  | Link names providing corrections. Separated by commas                                                                                 |
| No. of SV's (n)                             | I       | [-]  | No. of GNSS satellites used for this fix                                                                                              |
| No. of ref. stations (r)                    | I       | [-]  | No. of ref. stations used for fix. Set to 0 for non-differential solutions                                                            |
| PRN's of SV's used                          | A*n     | [-]  | GNSS satellites used for this fix in RINEX format (G-GPS, R-GLONASS, E-Galileo, C-BeiDou, J-QZSS). Separated by commas (e.g. G01,R03) |
| Ref. station ID                             | l*r     | [-]  | Reference stations used for this fix. Separated by commas.<br>Field(s) will not appear for non-differential solutions.                |
| End character                               | A1      | [-]  | ] (Close string)                                                                                                                      |
| CRLF                                        | A2      |      |                                                                                                                                       |

### **TRINAV** version 4 definitions commentary

- 1. CSV formatting is provided as a guide and it is possible and expected that greater resolution will be output if required.
- 2. The "Nav point no." is a unique integer identifying the position. It should be manually entered into the software according to requests from Positioning Engineers. Alternatively, this should start from 1 and be incremented if several positions are output from the same system.
- 3. WGS84 ellipsoid and datum must be used. Must be antenna height above the WGS84 ellipsoid.
- 4. The variance and covariance terms are elements from the variance-covariance matrix of the position fix computation (un-scaled).
  - 1. Unit variance currently unavailable and will be a NULL field for the moment.
- 5. The external reliability is the maximum positional effect of an undetectable error in an observation. This quantity is related to the power of the test (the probability that the MDE would be detected) and the significance level used.
  - 1. The values recommended by IMCA/OGP should be used (see IMCA/OGP Guidelines for GNSS positioning in the oil & gas industry Report No. 373-19 or IMCA S015, June 2011) i.e. a Significance level of test 1% and the Power of the test 80%.
  - 2. If values other than those given above are used, this must be explicitly stated by the contractor.





3. Veripos statistics are implemented as per the IMCA/OGP 'Guidelines for GNSS positioning in the oil & gas industry' Report No. 373-19 or IMCA S015, June 2011, unless otherwise indicated.

veripos 🔶

6. TRINAV V4 fix status codes:

| Status code | Meaning                                       |
|-------------|-----------------------------------------------|
| 0           | No or bad fix                                 |
| 1           | Altitude aiding (weighted height used in fix) |
| 2           | Altitude hold (2D fix)                        |
| 3           | 3D fix                                        |
| 4           | 3D fix INS aided                              |
| 5           | INS only (dead reckoning)                     |

1. TRINAV V4 computation type codes:

| Type code | Meaning                                                     |
|-----------|-------------------------------------------------------------|
| 0         | No corrections                                              |
| 1         | Single frequency DGNSS                                      |
| 2         | Dual frequency DGNSS                                        |
| 3         | PPP (satellite orbit and clock corrections)                 |
| 4         | PPP-AR (ambiguity resolution) using phase bias information. |
| 5         | Other                                                       |

2. TRINAV V4 correction source codes:

| Type code | Meaning                                                             |
|-----------|---------------------------------------------------------------------|
| L         | L-band only, always followed by 1 (i.e. L1)                         |
| М         | L-band multi-channel, followed by number of links tracked (e.g. M3) |
| 1         | Internet source, always followed by 0 (i.e. I0)                     |
| 0         | Other, always followed by 0 (i.e. O0)                               |





# 5.3.13 Veripos UKOOA sentence

The Veripos UKOOA sentence is compliant with **OGP 373-19** and **IMCA S015 (July 2011)**. For further information relating to these standards please visit https://www.iogp.org and https://www.imca-int.com.

### Veripos UKOOA sentence structure & example

[240 7300 VERI 1 2067 295238.0 +0.1 +8.0 057 12.08207N 002 11.53776W 63.997 +50.40 1.151 0.564 1.004 7 0.025 0.054 0.14 0.001 0.000 0.000 0.003 0.06 0.05 6.5 P 15{ 20 27 13 30 26 8 21 16 7 10 15 85 77 75 86} 1{ 481}]

#### Veripos UKOOA sentence defined

| Field | Content                              | Notes                                                                                                                         |
|-------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Field | Content                              | Notes                                                                                                                         |
| 1     | Start Character                      | Open string                                                                                                                   |
| 25    | Length of<br>Message                 | Number of characters                                                                                                          |
| 610   | Software Version                     |                                                                                                                               |
| 1116  | System Name                          |                                                                                                                               |
| 1718  | Record Identifier                    | Shows the calculation used, as different calculations can be labelled: 1, 2, 3 etc                                            |
| 1923  | GPS Week<br>Number                   | Since Jan 6 <sup>th</sup> 1980                                                                                                |
| 2432  | GPS Time of Fix                      | Seconds into current GPS Week                                                                                                 |
| 3337  | Age of Record                        | Time (in seconds) of the first character of the data string being output, minus the time of position.                         |
| 3843  | Latency                              | Latency in seconds                                                                                                            |
| 4456  | Latitude                             | Latitude displayed with spaces, dd mm.mmmmm'                                                                                  |
| 57    | Latitude<br>Hemisphere<br>Indicator  | N or S                                                                                                                        |
| 5871  | Longitude                            | Longitude displayed with spaces, dddmm.mmmmm'                                                                                 |
| 72    | Longitude<br>Hemisphere<br>Indicator | E or W                                                                                                                        |
| 7379  | Altitude above<br>MSL                | Antenna height (in metres) above mean sea level (datum for height calculations)                                               |
| 8087  | Geoid Separation                     | Separation between mean sea level and the WGS84 reference ellipsoid (in metres), based on a Geoid model as for example EGM96. |
| 8894  | PDOP                                 |                                                                                                                               |
| 95101 | HDOP                                 |                                                                                                                               |




| Field                                             | Content                                       | Notes                                                                                                                                                                                                             |
|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 102108                                            | VDOP                                          |                                                                                                                                                                                                                   |
| 109110                                            | Fix Status                                    | Single Frequency                                                                                                                                                                                                  |
| 0 = None<br>or Bad<br>Fixes                       | 4 = None or Bad<br>Fixes                      | 0 = None or Bad Fixes                                                                                                                                                                                             |
| 1 =<br>Altitude<br>Aiding<br>(weighted<br>height) | 5 = Altitude<br>Aiding (weighted<br>height)   | 1 = Altitude Aiding (weighted height)                                                                                                                                                                             |
| 2 =<br>Altitude<br>hold (2D<br>Fix)               | 6 = Altitude hold<br>(2D Fix)                 | 2 = Altitude hold (2D Fix)                                                                                                                                                                                        |
| 3 = 3D Fix                                        | 7 = 3D Fix                                    | 3 = 3D Fix                                                                                                                                                                                                        |
| 111117                                            | Internal Reliability                          | Smallest outlier (in metres) that is likely to be detected by the current solution.                                                                                                                               |
| 118125                                            | External Reliability                          | Maximum positional effect (in metres) of an undetectable error in an observation. This quantity is related to the Power of the test (probability that the MDE would be detected) and the Significance level used. |
| 126130                                            | Unit Variance                                 | The Variance and Covariance terms are elements from the variance-<br>covariance matrix of the position fix computation (un-scaled) in<br>metres <sup>2</sup> .                                                    |
| 131137                                            | Variance Latitude                             |                                                                                                                                                                                                                   |
| 138145                                            | Covariance<br>Lat/Long                        |                                                                                                                                                                                                                   |
| 146152                                            | Variance<br>Longitude                         |                                                                                                                                                                                                                   |
| 153159                                            | Variance Height                               |                                                                                                                                                                                                                   |
| 160165                                            | 95% Error Ellipse<br>Semi Major Axis          | Shows 95% confidence level of the semi-major axis of the error ellipse in metres.                                                                                                                                 |
| 166171                                            | 95% Error Ellipse<br>Semi Minor Axis          | Shows 95% confidence level of the semi-minor axis of the error ellipse in metres.                                                                                                                                 |
| 172177                                            | Orientation Of<br>Semi Major Axis of<br>Error | Orientation of the semi major axis (degrees from true North)                                                                                                                                                      |
| 178179                                            | F Test                                        | A test applied to the Unit Variance. (P=Pass, F=Fail).<br>A "Fail" may result from large outliers in the measurements.                                                                                            |
| 180182                                            | No of Satellites                              |                                                                                                                                                                                                                   |





| Field    | Content                                                           | Notes                                  |
|----------|-------------------------------------------------------------------|----------------------------------------|
|          | used in the Fix (n)                                               |                                        |
| Variable | Satellite PRN<br>Numbers of<br>Satellites used in<br>Fix          | PRN numbers are space separated        |
| Variable | Number of<br>Reference<br>Stations used for<br>this Fix (00 – 99) |                                        |
| Variable | Ids of the<br>Reference<br>Stations used in<br>the Fix            | Station ID numbers are space separated |
|          | End of Character                                                  | Close string                           |
|          | Carriage Return                                                   |                                        |
|          | Line Feed                                                         |                                        |



## 5.3.14 BESTPOS / BESTGPSPOS sentences

BESTPOS / BESTGPSPOS sentences contain time and position fix-related data for a GPS system and include basic quality information, limited to 'Fix Quality', 'Number of Satellites in Use', 'HDOP' and 'Age of Corrections'.

#### **BESTPOS / BESTGPSPOS sentences structure & example**

#BESTPOSA,USB1,0,58.5,FINESTEERING,2209,502061.000,02000020,cdba,16809;SOL\_ COMPUTED,PPP,51.15043706870,-114.03067882331,1097.3462,-17.0001,WGS84,0.0154,0.0139,0.0288,"TSTR",11.000,0.000,43,39,39,38,00,00,7f,37\*52483ac5

veripos 🔶

#### **BESTPOS / BESTGPSPOS sentences defined**

| Field                              | Content                                                                                                                                                           |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Log header                      | BESTPOS header                                                                                                                                                    |
| 2. sol stat                        | Solution status                                                                                                                                                   |
| 3. pos type                        | Position type                                                                                                                                                     |
| 4. lat                             | Latitude (degrees)                                                                                                                                                |
| 5. lon                             | Longitude (degrees)                                                                                                                                               |
| 6. hgt                             | Height above mean sea level (metres)                                                                                                                              |
| 7. undulation                      | Undulation - the relationship between the geoid and the ellipsoid (m) of the chosen datum $% \left( {{\left[ {{m_{\rm s}} \right]} \right]_{\rm source}} \right)$ |
| 8. datum id#                       | Datum ID number<br>61 = WGS84<br>63 = USER                                                                                                                        |
| 9. lat σ                           | Latitude standard deviation (m)                                                                                                                                   |
| 10. lon σ                          | Longitude standard deviation (m)                                                                                                                                  |
| 11. hgt σ                          | Height standard deviation (m)                                                                                                                                     |
| 12. stn id                         | Base station ID                                                                                                                                                   |
| 13. diff_age                       | Differential age in seconds                                                                                                                                       |
| 14. sol_age                        | Solution age in seconds                                                                                                                                           |
| 15. #SVs                           | Number of satellites tracked                                                                                                                                      |
| 16. #solnSVs                       | Number of satellites used in solution                                                                                                                             |
| 17. #solnL1SVs                     | Number of satellites with L1/E1/B1 signals used in solution                                                                                                       |
| 18. #solnMultiSVs                  | Number of satellites with multi-frequency signals used in solution                                                                                                |
| 19. Reserved                       |                                                                                                                                                                   |
| 20.ext sol stat                    | Extended solution status                                                                                                                                          |
| 21. Galileo and BeiDou sig<br>mask | Galileo and BeiDou signals used mask                                                                                                                              |
| 22. GPS and GLONASS sig mask       | GPS and GLONASS signals used mask                                                                                                                                 |





#### 5.3 LD8 output sentences

| Field        | Content                            |
|--------------|------------------------------------|
| 23. xxxx     | 32-bit CRC (ASCII and Binary only) |
| 24. [CR][LF] | Sentence terminator (ASCII only)   |





# **6** Contact information

All initial contacts regarding technical or support issues should be initially addressed to Veripos Support. Where appropriate Support will refer issues to the regional operations and engineering teams.

## 6.1 Veripos Support details

Veripos Support website Veripos Support telephone Veripos Support e-mail

https://veripos.com/support +44 1224 965900 support.veripos@hexagon.com





# 7 Appendix

## 7.1 Summary specification of antennas

## 7.1.1 Veripos V560 combined GNSS & L-band antenna

| L-band/GPS/GLONASS:             | 1525-1610 MHz                                   |
|---------------------------------|-------------------------------------------------|
| GPS L2/GLONASS L2:              | 1160-1252 MHz                                   |
| (complete with a narrow band fi | Iter for interference rejection)                |
| LNA Gain:                       | 45db                                            |
| DC Voltage input:               | 3.0 to 15.0V                                    |
| RF Input Connector:             | TNC female (note cable RF connector – TNC male) |
| Material:                       | Weather Proof Polymer Plastic                   |
| Mount:                          | 5/8" Tripod Tread Connector                     |
| Temperature Range:              | -55 to +85°C                                    |
| Certification:                  | IEC 60945                                       |
| Diameter:                       | 7.5" / 19.05cm                                  |
| Height:                         | 3.17" / 8.05cm                                  |
| Weight:                         | 1.6lbs / 0.73kg                                 |

veripos 🔶

### 7.1.2 V560 phase centre offsets

The diagram on the left shows the antenna reference position (ARP) vertical offset from the GNSS L1 and L2 frequencies phase centres, and the diagram on the right shows ARP at the antenna base and the antenna North alignment reference:



V560 phase centre values above ARP



V560 ARP & North alignment reference



veripos 🔶

The table below details the North, East and Up phase centre values for GNSS L1 and L2 frequencies:

|                       | Relative to Antenna Reference Point (ARP) |         |       |  |
|-----------------------|-------------------------------------------|---------|-------|--|
| <b>GNSS Frequency</b> | North (mm)                                | Up (mm) |       |  |
| L1                    | -0.34                                     | -0.53   | 58.24 |  |
| L2                    | 0.11                                      | -0.76   | 68.35 |  |

## 7.2 Summary specification of cabling

With the system Veripos typically provide pre-terminated cables and tails for use with both L-band and GNSS antennas (see the *Delivery note*). Veripos recommend use of Times Microwave coaxial LMR cable for installation of all antennas.

### 7.2.1 Times LMR-400 coaxial cable

#### 7.2.1.1 Electrical specifications

| Performance property    | Units          | US    | (metric) |
|-------------------------|----------------|-------|----------|
| Attenuation @1.5GHz:    |                |       |          |
| 30.77m (100ft.)         | 5.1dB          |       |          |
| 100m                    | 16.8dB         |       |          |
| Velocity of propagation | %              | 85    |          |
| Dielectric constant     | N/A            | 1.38  |          |
| Time delay              | nS/ft (nS/m)   | 1.20  | (3.92)   |
| Impedance               |                | 50    |          |
| Capacitance             | pF/ft (pF/m)   | 23.9  | (78.4)   |
| Inductance              | uH/ft (uH/m)   | 0.060 | (0.20)   |
| Shielding effectiveness | dB             | >90   |          |
| DC resistance           |                |       |          |
| Inner conductor         | /1000 ft (/km) | 1.39  | (4.6)    |
| Outer conductor         | /1000 ft (/km) | 1.65  | (5.4)    |
| Voltage withstand       | VDC            | 2500  |          |
| Jacket spark            | Vrms           | 8000  |          |
| Peak power              | kW             | 16    |          |

#### 7.2.1.2 Mechanical specifications

| Performance property      | Units        | US    | (metric) |
|---------------------------|--------------|-------|----------|
| Bend radius, installation | in. (mm)     | 1.00  | (25.4)   |
| Bend radius repeated      | in. (mm)     | 4.0   | (101.6)  |
| Bending moment            | ft-lb (N-m)  | 0.5   | (0.68)   |
| Weight                    | lb/ft (kg/m) | 0.068 | (0.10)   |





#### 7.2 Summary specification of cabling

| Performance property | Units          | US  | (metric) |
|----------------------|----------------|-----|----------|
| Tensile strength     | lb (kg)        | 160 | (72.6)   |
| Flat plate crush     | lb/in. (kg/mm) | 40  | (0.71)   |

## 7.2.1.3 Environmental specifications

| Performance property           | °F           | °C         |
|--------------------------------|--------------|------------|
| Installation temperature range | -40 to +185  | -40 to +85 |
| Storage temperature range      | -94 to +185  | -70 to +85 |
| Operating temperature range    | -40 to +1851 | -40 to +85 |

## 7.2.2 Times LMR-240 coaxial cable

## 7.2.2.1 Electrical specifications

| Performance property                                | Units                            | US          | (metric)         |
|-----------------------------------------------------|----------------------------------|-------------|------------------|
| Attenuation @1.5GHz:                                |                                  |             |                  |
| 30.77m (100ft.)                                     | 9.9dB                            |             |                  |
| 100m                                                | 32.4dB                           |             |                  |
| Velocity of propagation                             | %                                | 84          |                  |
| Dielectric constant                                 | N/A                              | 1.42        |                  |
| Time delay                                          | nS/ft (nS/m)                     | 1.21        | (3.97)           |
| Impedance                                           |                                  | 50          |                  |
| Capacitance                                         | pF/ft (pF/m)                     | 24.2        | (79.4)           |
| Inductance                                          | uH/ft (uH/m)                     | 0.060       | (0.20)           |
| Shielding effectiveness                             | dB                               | >90         |                  |
| DC resistance<br>Inner conductor<br>Outer conductor | /1000 ft (/km)<br>/1000 ft (/km) | 3.2<br>3.89 | (10.5)<br>(12.8) |
| Voltage withstand                                   | VDC                              | 1500        |                  |
| Jacket spark                                        | Vrms                             | 5000        |                  |
| Peak power                                          | kW                               | 5.6         |                  |

#### 7.2.2.2 Mechanical specifications

| Performance property      | Units        | US    | (metric) |
|---------------------------|--------------|-------|----------|
| Bend radius, installation | in. (mm)     | 0.75  | (19.1)   |
| Bend radius repeated      | in. (mm)     | 2.5   | (63.5)   |
| Bending moment            | ft-lb (N-m)  | 0.25  | (0.34)   |
| Weight                    | lb/ft (kg/m) | 0.034 | (0.05)   |





## 7.2 Summary specification of cabling

| Performance property | Units          | US | (metric) |
|----------------------|----------------|----|----------|
| Tensile strength     | lb (kg)        | 80 | (36.3)   |
| Flat plate crush     | lb/in. (kg/mm) | 20 | (0.36)   |

## 7.2.2.3 Environmental specifications

| Performance property           | °F          | ٥°         |
|--------------------------------|-------------|------------|
| Installation temperature range | -40 to +185 | -40 to +85 |
| Storage temperature range      | -94 to +185 | -70 to +85 |
| Operating temperature range    | -40 to +185 | -40 to +85 |



## 7.3 L-band coverage map

