
 Page | 1 

Direct Utilization of LiDAR Data in GNSS/IMU Processing 
for Indoor and Mobile Mapping Applications 

Cosandier, D.b, Martell, Ha. and Roesler, G.a 

aNovAtel Inc., AB, Canada, bNorient Systems, Germany 

Key words: SLAM, LiDAR positioning, Indoor Mapping, Mobile Mapping, GNSS, INS 

ABSTRACT :  
Scanning LiDAR sensors have become a standard component in most mobile mapping systems, and they 
provide an impressive level of detail in 3-dimensions. To provide real-world coordinates of the LiDAR point 
cloud, a GNSS/IMU system is often used for the exterior orientation1 (EO), and post-processing typically 
delivers optimal EO estimates. For producing the final point cloud, the navigation EO parameters can either be 
used directly or as an initial approximation for subsequent LiDAR processing, such as SLAM.  Therefore, 
improving the accuracies of the EO values produced by the GNSS/IMU system is highly desirable.  

This paper looks at the benefits of adding the scan-by-scan LiDAR matching directly into the navigation 
processing workflow. While LiDAR-only matching can be very sensitive to the surface geometry, the combined 
approach is much more robust due to the LiDAR-inertial coupled processing. In addition, for optimal results, 
this coupled approach requires accurate error modelling for each of the sensors being fused. Using both indoor 
and outdoor datasets collected with the Velodyne HDL-32 sensor, in areas where GNSS coverage is minimal or 
denied the algorithm is shown to significantly improve upon the GNSS/INS-only solution. In the case of the 
outdoor datasets, sections of the GNSS data were removed thereby providing – in addition to the reference 
trajectory – a trajectory with satellite outages, as typically occurs in urban canyons.  The results from these 
periods show a significant improvement in the position computation with the addition of LiDAR data. 

Obtaining indoor datasets with reference is difficult, but distinct improvements in point clouds are noticeable 
with the LiDAR navigation processing, and visual discrepancies can also be analysed for areas with multiple 
passes. It is shown that the combined GNSS/IMU/LiDAR processing reliably produces sub-metre and often sub-
50-cm results in building interiors, which provides a good initial estimate for subsequent SLAM—benefitting 
the automatic finding of loop-ties. 

1. INTRODUCTION  
3-D mapping is now commonly performed with scanning LiDAR sensors in airborne and mobile mapping 
(ground) environments.  In commercial mapping campaigns, EO parameters are often provided to the LiDAR 
sensor via a GNSS/IMU system.  In configurations such as this, the integrity of the real-world laser-point 
coordinates are largely dependent on the accuracy and reliability of the position and attitude information 
obtained from the coupled GNSS/IMU.  In airborne modes, this is usually not an issue because open-sky GNSS 
positioning has proven itself to centimetre level in a production mode context.  Attitude information, while 
partially dependent on the quality of the IMU, also benefits from associated high accuracy position 
determination.  However, mobile mapping at ground level has become increasingly important and common in 
recent years.  The consumption of such maps is now taken for granted by the public even though GNSS-
dependent mapping in high density urban areas is challenging.  More recently, backpack systems are taking 
scanning LiDAR mapping systems indoors and into locations where GNSS reception is non-existent. 

Commercial users are aware of the positioning issues associated with mobile mapping projects in areas where 
buildings and trees occlude or degrade signals from GNSS satellites.  In severe urban canyon areas, a tightly 
coupled GNSS/IMU may only provide absolute positioning at the metre-level.  In fact, without constant updates, 
the accompanying inertial system will drift relatively quickly depending on the quality of the system.  Given the 
current tendency towards employment of MEMS IMUs in ground surveys, especially those of a backpack nature, 
the inertial sensor may accumulate metres of error in a matter of minutes of free-mode operation.  The loss of 
accuracy in the EO parameters may consequently produce point cloud information which is degraded or even 
unacceptable to the end-user in a worst-case scenario. 

                                                                    
1 Position and orientation of a sensor in a reference frame 
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This paper addresses the problem of obstructed GNSS signals in ground mapping projects by proposing a post-
processed solution, whereby the LiDAR range data collected in a GNSS/IMU/LiDAR survey is utilized in an 
Iterative Closest Point (ICP) solution as relative coordinate updates to the inertial sensor.  The system currently 
utilizes scan-to-scan-matching, which is robust and requires little or no user-input. In cases where subsequent 
scans do not match due to lack of overlap, too many dynamic objects or poor geometry, the system puts more 
emphasis on the inertial solution. 

The focus of this paper is to determine the benefit of adding LiDAR to the navigation post-processing.  We 
exploit the information obtained from GNSS/INS/LiDAR systems by combining a commercial GNSS/INS post-
processing package with CloudMatcher, a custom-developed ICP scan-matching application.  This data is 
employed here in reconstructing trajectory information from production-level surveys performed in several 
GNSS-restricted indoor and outdoor environments, and the results are presented with respect to available 
reference data. 

The organization of the paper is as follows.  Section 2 presents methodology, Section 3 shows the workflow and 
covers operational issues, Section 4 exhibits results, while Section 5 outlines conclusions. 

2. METHODOLOGY  
This section outlines the process of utilizing LiDAR and navigation (GNSS/IMU) data as inputs to compute a 
precise, high-rate trajectory that can be used to geo-locate the LiDAR point cloud. This description focuses on 
the LiDAR integration and scan-matching algorithm. 

2.1 GNSS/INS Processing 
Utilizing GNSS and IMU measurements to position and orient LiDAR point clouds has been commonplace since 
the advent of LiDAR. NovAtel’s Inertial Explorer (IE) is an example of a software package that accepts raw 
GNSS/IMU data and outputs accurate, high-rate trajectory information, as explained by Kennedy and Martell 
in [1].  Recently, IE was modified to accept position, velocity and attitude (PVA) updates, which are derived 
from external sensors, such as camera systems or LiDAR.  The “PVA” file supports two update types: relative 
updates, a difference between epochs, and absolute updates, a coordinate update in an established reference 
frame. Obtaining absolute updates has additional complexity, as they require pre-surveyed control points; 
however, relative updates, which are the focus of this paper, are extracted from scan-to-scan or image-to-image 
data, and they provide local-level2 position (r), attitude (R) and velocity (v), as well as the associated covariance 
(C).  Scans are generally captured at a rate higher than 1 Hz, but they are integrated together to form a 1 Hz 
update. An illustration is provided in Figure 1. 

 

Figure 1: PVA vector formation presented in 2 dimensions 

 

The PVA file is an input into the navigation Kalman filter and will be used as an update for the filter. A Kalman 
filter provides optimal results when precise error modeling is provided for each sensor used.  This means that 
the PVA updates must also have a realistic covariance matrix (C) assigned.  

In post-processing, the Kalman filter can process the data in both forward and reverse chronological order. 
Unfortunately, the position trajectory is subject to step-effects caused by Kalman filter updates. Furthermore, 
position accuracy during outages grows at a 2nd order rate. An essential part of post-processing is the 
backsmoother, which recursively processes the data and updates the error filter states as it proceeds.  With 
proper error modeling, the backsmoother can improve accuracies significantly.  The backsmoother’s ability to 
compensate for errors is directly related to the quality of the error modeling. 

                                                                    
2 True-north, z-up Cartesian coordinate system centered about the current position. 
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Figure 2: GNSS/INS Post-Processing Workflow 

The entire navigation process is shown in Figure 2, where the Kalman filter and backsmoother have been 
introduced.  The final step is to combine the forward and reverse data streams into a single combined 
trajectory.  

2.2 Scan-Matching Algorithm 
The goal of the LiDAR-matching algorithm is to correlate pairs of LiDAR point clouds to compute the relative 
translation and rotation between the point clouds.  The relative LiDAR scan matches must be highly accurate—
on the order of 1 cm between scans.  

The method used to compute the relative LiDAR vector and attitude is that of Iterative Closest Point (ICP)—
first proposed as the point-to-point variant by Besl and McKay in [2]. The point-to-plane algorithm used here 
was later introduced by Zhang in [3]. It can be described as follows: For each point in cloud ‘A’, the ICP finds 
the closest matching point in cloud ‘B’ using a 6-parameter transformation (position + attitude) between the 
two, which is initially approximated by the navigation EO data. Using these matched point-pairs, the 6-
parameter rigid body transformation is updated by solving a system of equations. Since the “closest point” is 
not necessarily the correct point-match, the algorithm must iteratively transform point cloud ‘B’, re-find 
matches and solve for a new transformation.  

ICP typically has three major issues: 

a) Errors in position and attitude are induced by moving objects and indistinct objects such as foliage. 
b) Converges to a false minimum—especially if given poor initial estimates. 
c) A failure to converge at all due to a lack of “matchable” features in one or more axes. 

For the first issue (a), the blunder detection algorithm is a critical part of the ICP, as covered by Rusinkiewicz 
in [4]. Essentially, there are three tests that may be applied: 

i) The point-to-plane distance for a given match must be less than a tolerance—known as the distance 
tolerance  

ii) If surface normals are formed on both point clouds, then the angle between the surface normals pairs 
should be less than a tolerance 

iii) If the same point in cloud ‘B’ is matched to several points in ‘A’, these are considered duplicates and all 
but the closest match is rejected.  This is common in the boundary areas of the point clouds. 

Together these tests remove the majority of incorrect matches.  Typically, half the points remain after this stage, 
but this is not a problem given that many thousands of points are used to compute 6 unknowns. 

Issue (b), convergence to a false minimum, is largely mitigated by the fact that the navigation system is also 
providing a precise relative position and attitude estimate. Hence, ICP is “fine-tuning” this solution.  
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A failed convergence described by (c) is a major problem for LiDAR-only SLAM systems because it forms a 
discontinuity in the relative accumulated trajectory. Fortunately, the GNSS/INS processor can work 
independently of the LiDAR updates and will still provide a solution. 

2.3 Forming Point Cloud Pairs 
LiDAR sensors can operate at different scan rates, for example 10, 15 or 20 Hz. Each scan provides many tens 
or hundreds of thousands of points, but most are not utilized —especially with tilted LiDAR mounts. Matching 
single scans tends to be less accurate than combining multiple sweeps3 into a single point cloud.  

For each pair or n-tuple of sweeps, a “reference time” is needed. The point cloud coordinates will be relative to 
the position at this time.  Point cloud matches are collected and integrated until 1.0 second has elapsed. The 
point clouds straddling the whole second are referenced to this time and are used to output the PVA data to file 
for subsequent navigation processing iterations. This process is illustrated in Figure 3. 

 
Figure 3: Illustration of point cloud formation (10 Hz input with window size of 3) 

The data interval between point clouds depends on the maximum speed. For slow or walking applications, a 
lower data-rate (such as 2 Hz) can be used. In this case, only a sub-set of the LiDAR data is needed unless the 
number of sweeps is increased. This increases computational cost but can improve accuracies. For faster 
vehicle platforms, all of the data should be used to maximize overlap. In tilted LiDAR implementations, where 
the LiDAR unit is mounted at an angle, there may not be enough overlap between point clouds for accurate 
scan-matching. In such cases, it is advised to keep the speeds below a threshold to maintain sufficient overlap 
in the scans4. LiDAR units mounted with the rotation axis near vertical (i.e. ~0° tilt) will provide the best ICP 
results, and very steep tilt angles provide the poorest.  

2.4 Error Modeling 
Assigning realistic covariances to the relative PVA outputs is crucial because the Kalman filter is fusing multiple 
data inputs including IMU, GNSS, LiDAR-odometry and possibly vehicle odometry. In the case of ICP, the EO 
parameters from each cloud-pair will have a varying accuracy depending on the sensor precision and scene 
geometry.  Using the covariance estimated by the 6-parameter ICP solution solver, a robust and representative 
full covariance estimate is computed for each PVA record.  The input standard deviation should be calibrated 
for a given sensor, but otherwise remains constant from project to project.  Figure 4 shows the estimated errors 
(SD values) for Y (along-track), X (across-track) and Z (height) for a half hour section of HDL-32 outdoor urban 
data.  The estimated ICP errors can be verified against the GNSS\INS solution.  This can be accomplished by 
using surveys that provides various LiDAR geometries and reasonable GNSS signal tracking for reference.  

                                                                    
3 Also known as scans or frames. 
4 For a 45° LiDAR mount angle, such a maximum speed is ~65 km/h or 40 MPH. 
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Figure 4: Estimated ICP errors from a sample outdoor scene 

3. WORKFLOW AND OPERATIONAL ISSUES  
This section discusses practical issues and shows the workflow of the entire LiDAR-GNSS-IMU processing 
outlined in Section 2. 

3.1 LiDAR Processing Workflow 
Figure 5 shows the process for obtaining precise EO values given the raw data inputs.   The procedure is to 
iteratively execute first the GNSS/IMU processing and then, in a subsequent step, perform the LiDAR processing 
in order to output a PVA file.  This PVA file is used to update the next GNSS/IMU computation cycle.  Optionally, 
the LiDAR-derived PVA file may only cover sections where GNSS information is degraded or absent.  Typically, 
the entire GNSS/INS/LiDAR solution sequence converges within two to four iterations.  The last step in the 
processing is to re-export the LiDAR point could using the final trajectory. 

 

Figure 5: Entire LiDAR/GNSS/IMU Processing Workflow 

3.2 GPU Acceleration and Point-Thinning 
ICP scan-matching is computationally intensive given the large number of LiDAR points. For example, an HDL-
32 may produce several billion points over four hours of data collection. The original implementation of the 
ICP algorithm employed here would require more than 6 hours to process one iteration of this data set. From 
the investigation, it was determined that the majority of the CPU time was spent searching corresponding point 
clouds to find the nearest neighboring (NN) points, using the FLANN library, developed by Muja and Lowe in 
[6].    
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Three methods were investigated to reduce the ICP processing time: 

a) Utilize faster processing hardware, such as a GPU; 
b) Employ a different algorithm other than the KD-tree for the nearest neighbor searches;  
c) Reduce the number of points in a way that does not affect accuracy. 

Ultimately, all three of these approaches were utilized to improve processing speeds. Many LiDAR users have 
a graphics card for visualization. These can be utilized through NVIDIA’s CUDA (or alternately OpenCL) API.  
Algorithms that can be parallelized efficiently may run much faster on a GPU than on a multi-core CPU. In this 
investigation, it was determined that the KD-tree algorithm, whether FLANN or custom-developed, is not 
optimally suited to the architecture of the GPU. The authors investigated employing Morton codes for the 
purposes of improving memory caching speeds (described by Morton in [7]). This algorithm utilized the 
computational power of the GPU and delivered significant speed improvements for the nearest neighbor 
searches (shown in Figure 6). Finally, the Morton point coding permits a fast and efficient point reduction 
scheme, typically halving the point count while also improving ICP accuracy and throughput. 

 
Figure 6: Speed improvement with Morton Search on GPU 

The 4 hour survey described in section 4.2 now processes in ~45 minutes per iteration (or ~5 times real-time), 
and there are still further opportunities to improve the processing efficiency. 

3.3 Boresight Determination 
For any LiDAR application that utilizes an IMU, a precise boresight5  is an essential prerequisite.  The combined 
ICP/inertial processing is especially sensitive to these angles.  It should be noted that a verification of the IMU-
LiDAR sensor boresight angles is required for new LiDAR installations. The process for determining the 
boresight angles is implemented in two steps. 

1) Convert a piece of the LiDAR data to an absolute point cloud. The goal is to generate a visually correct 
point cloud.  Focusing on the correct representation of vertical surfaces will allow the roll angle to be 
corrected.  For this purpose, the CloudCompare program has been used here (see [9]). 

2) In stage two, the ICP is run with a reliable fixed-integer GNSS solution. Errors in the pitch or heading 
boresight will cause a speed-dependent ramp in the residuals, and by iteratively minimizing these 
residuals, the angles can be computed. 

4. TEST RESULTS  
The results presented here are based on production datasets contributed to us by commercial LiDAR operators.  
We have included two urban mobile mapping projects undertaken in Madison, Wisconsin, one indoor/outdoor 
building survey in Toronto, Ontario and one UAV LiDAR-mapping survey flown in the Los Angeles, California 
area. 

The equipment utilized in all cases consisted of a NovAtel SPAN GNSS/INS equipped with dual frequency 
receiver and MEMS IMU.  The LiDAR sensors for all surveys were the HDL-32, manufactured by Velodyne.  The 

                                                                    
5 The angular offsets between the IMU and LiDAR measurement frames 
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GNSS/INS/LiDAR post-processing software employed was a version of NovAtel’s Inertial Explorer software 
loosely coupled to the CloudMatcher ICP program.  Similar MEMS inertial units6 were deployed for all tests. 

Experimental results for the mobile mapping and aerial surveys were obtained by utilizing the original data 
with full GNSS coverage and selecting an area where accuracy is optimal. This provides a reference for the next 
stage of the test where GNSS data was fully omitted from parts of datasets to simulate a complete outage, such 
as would be anticipated in urban canyon or under dense foliage conditions. Outages of 100 to 400 seconds were 
added, and solutions with and without LiDAR scan-matching are shown either visually as point clouds, as 
position error plots, or in tabular form.  

Deriving truth information for the indoor data set was problematic given that no GNSS information was 
available.  For this survey, indirect information is relied on, such as ghosting effects in the point cloud geo-
referenced from the ICP/INS procedure. 

4.1 First Mobile Mapping Test (20 Minute Operation Time) 
This is the first mobile mapping test-survey provided by Mandli Communications and covers the downtown 
area of Madison, WI, largely consisting of two to six story structures. This is not a “true” urban canyon, but the 
data within the LiDAR field of view has similar building profiles to cities with taller structures and is still 
representative; furthermore, there are also many moving objects, such as vehicles, pedestrians and cyclists, 
while foliage is also abundant. Hence, such data is ideal for prototyping the software, given that truth is 
available via the GNSS  data. Like many other mobile mapping systems, the LiDAR sensor was mounted with a 
45° tilt angle, so along-track ICP accuracies are poorer than those in the other axes. 

The GNSS/IMU data was post-processed in tightly-coupled mode to create a reference trajectory.  Accuracy of 
the resulting reference trajectory was estimated to only be 15 cm for the time period selected owing to signal 
interference in the downtown environment.  Using this first pass as truth, some GNSS data was then removed 
in a second step to induce an outage lasting for 300 seconds.  This is shown as the grey area in the left of Figure 
7. It can be seen that INS-only processing for the 5 minute outage period results in errors with respect to truth 
of up to 0.75 m.  Finally, in a third pass, LiDAR updates were introduced during the GNSS outage period.  This 
resulted in a significant accuracy improvement.  In fact, the maximum error was almost halved by employment 
of ICP-derived updates.   

 

Figure 7: Accuracy improve of adding LiDAR scan-matching (on induced outage) 

4.2 Second Outdoor Mobile Mapping Test (4h 20m Observation Time) 
In late fall of 2017, Mandli provided a longer survey collected with the same sensor, also through Madison, WI.  
Given the length of the data, the GPU accelerated version of CloudMatcher was used.  Stand-alone GNSS/INS 
performed reasonably well here. For example, Figure 8 shows 5 vehicle passes over the same location; this is 
from an area with a few signal obstructions.  The lines appearing to go into the page are intensity plots of the 
same white road lines mapped on the multiple vehicle runs.  Any discrepancies larger than several centimetres 
                                                                    
6 With accel. bias of 0.01-0.05 m/s2 and gyro angular random walk (ARW) of ~0.6 °/√hr 



 Page | 8 

would show up as ghosting. For instance, vertical errors, would show up as a distinct series of lines stacked on 
top of one another. The consolidation of the 5 line images into one indicates that point precision is at cm level 
in this region. 

 

Figure 8: LiDAR intensity values for 5 vehicle passes (curb view) 

By carefully examining the position and orientation standard deviations and GNSS position quality, 19 time-
locations possessing high accuracy (<2 cm) were selected. These form the truth points for the subsequent INS 
LiDAR-aided processing. Surrounding each of these points, a 100 second GNSS outage was inserted. The truth-
point is at the middle of the outage interval, where errors tend to be maximum. The entire dataset was 
processed with and without LiDAR scan-matching. This can be seen in Table 1, accuracy improved from half 
metre to decimetre-level, and this is a reduction in error of ~3 times horizontally and ~5 times vertically.  The 
benefit to the z-axis (elevation) is due to the substantial number of the ICP points on the ground. This data set 
shows that LiDAR processing is a useful tool to compensate for missing or severely occluded GNSS signals. 

 

 

 

 

 

 

 

 

 

 

 

  Table 1: Table of errors for test points with and without LiDAR updates 

4.3 Indoor Mapping Example 
Determination of truth for indoor datasets can be problematic owing to the complete absence of GNSS coverage.  
It should be noted that in this survey, GNSS was used to initialize the position, while initial attitude is 
determined by walking in a straight line for 100 m outdoors. However, inside the building only the INS system, 
whose position continually drifts, determines the position. Hence, examining the benefit of LiDAR scan-
matching is appealing. The majority of indoor environments with walls and ceilings provide good geometry for 
the LiDAR scan-matching; however, long corridors and hallways can be challenging. 

Outage/ 
Test-point 

Error with NAV-only (no LiDAR) Error with LiDAR scan-matching 
East (m) North (m) Elev (m) East (m) North (m) Elev (m) 

1 0.09 -0.85 0.11 0.02 0.03 -0.06 
2 0.73 -0.04 0.68 0.35 0.02 0.18 
3 0.54 -0.52 0.23 0.03 -0.01 0.06 
4 -0.32 -0.01 -0.34 0.07 -0.05 -0.15 
5 -1.10 -0.35 -0.52 -0.04 0.11 -0.11 
6 0.10 -0.51 -0.35 0.08 0.24 -0.17 
7 0.04 -0.73 0.15 0.05 0.05 0.06 
8 0.18 -0.13 -0.16 0.03 0.02 -0.03 
9 -0.61 1.03 -0.11 0.39 -0.27 0.16 
10 0.05 0.11 -0.13 0.12 0.04 -0.05 
11 0.07 0.26 -0.41 -0.16 0.17 -0.09 
12 -0.04 1.20 0.39 0.10 0.14 0.07 
13 -0.10 0.26 0.09 0.00 -0.12 0.10 
14 0.00 -0.04 0.28 -0.07 -0.21 -0.01 
15 0.37 0.16 0.63 0.11 0.19 0.00 
16 0.04 -0.14 1.59 0.11 -0.04 0.15 
17 -0.23 0.02 0.28 0.20 -0.30 0.09 
18 0.29 -0.09 0.48 0.20 0.01 0.07 
19 -0.49 0.40 -0.17 -0.12 -0.02 -0.10 
RMS (m) 0.47 0.50 0.50 0.16 0.14 0.10 
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The indoor survey in question was mapped with a GNSS/INS/LiDAR system attached to a cart. Again, the 
system started outdoors to provide initialization of position and attitude, and then moved indoors.  

Due to the lack of truth, verification of the accuracy is made from the intrinsic nature of the point cloud 
depiction.  Using CloudCompare to visually evaluate the ghosting effects and general sharpness of the point 
cloud, insight into the precision of the indoor map is obtained.  Also, the estimated position standard deviations 
provide clues to the overall accuracies. Although not always correct in the absolute sense, they do provide a 
good reference for evaluating the benefit of LiDAR, as they are highly correlated to the actual errors. Figure 9 
shows the estimated position standard deviation values including the LiDAR and non-LiDAR portions. 

 

Figure 9: Estimated position standard deviation of the entire dataset 

 

For this test, a GNSS/INS/LiDAR system was wheeled throughout a building for a period of 35 minutes.  In the 
given test, LiDAR measurements were made for only the first 12.5 minutes of the experiment.  LiDAR data 
collection began at the south end of the building and was discontinued part way through the traverse.  For the 
first portion of the experiment, the inertial system was updated with zero velocity updates and relative 
coordinate vectors derived from ICP.  For the remainder of the survey, the inertial process was aided by ZUPTs 
and constraints only. The drift in the trajectory following elimination of the LiDAR-aiding can be clearly seen 
in the given image.  There should be an obvious difference between a point cloud geo-referenced by INS-only 
and point clouds registered from INS updated by ICP.  This is illustrated in the side by side example in Figure 
10 

.  

Figure 10: Left side INS-only, right side INS aided with LiDAR 
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The left-hand side of Figure 10 depicts a point cloud that was geo-referenced with only a MEMS IMU.  The right-
hand side of the image renders the same point cloud data, but it includes the ICP updates with the MEMS IMU.  
The differences are striking.  The IMU-only image portrays a trajectory which drifts significantly over time as 
the cart is pushed through the visible hallways.  Some question remains on how accurately the right-hand side 
of the figure has registered the point clouds utilizing LiDAR data.  Without truth data, we examine the quality 
of the final point cloud. 

 

Figure 11: Measuring ghosting effect in indoor survey 

Figure 11 shows the maximum ghosting effect observed when ICP updates were used. The spatial separation 
between multiple passes shows ~0.40 m horizontal difference in the registration of the two cubicle walls. A 
SLAM algorithm that automatically detects loop-ties should have little difficulty in reducing this difference. 
With INS-only, the discrepancy is 5-6 m, which means that rooms or cubicles may be matched incorrectly with 
loop-ties. 

4.4 GNSS-Denied Airborne Drone Example 
Airborne mapping is typically synonymous with high quality GNSS data and stands to gain little from LiDAR 
odometry. However, there are certain cases where overhead structures may be an issue and GNSS signals can 
also be jammed.  One issue ICP has with such data is a lack of geometry in the across and along-track directions, 
making this a challenging dataset for the ICP algorithm. 

In this survey, the high quality GNSS data results in an accurate reference trajectory.  Figure 12 shows the point 
cloud geo-referenced with full GNSS coverage.  This visualization shows consistency between the flight-lines.  
To stress the software, an outage was added to almost the entire LiDAR collection.  Only 20 seconds of GNSS at 
the beginning and end of the dataset are retained. This induces an outage of 6 minutes and 20 seconds, which 
is long for an airborne project. During this period, the position error increases to 10 m. This is distinctly visible 
in the point cloud shown in Figure 13.  Finally, ICP processing is added. For 26% of the solutions, the ICP did 
not converge at all, and this is to be expected given the geometry for the ICP. This tests how well the software 
deals with ICP convergence failures. For those epochs that do succeed, the height update is especially beneficial 
to the GNSS/INS processing as illustrated in Figure 14.  The horizontal accuracy improves from 10 m maximum 
error to 0.85 m with ICP, and the height accuracy improves from 2 m of error to 0.3 m.  
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Figure 12: Point cloud using full GNSS coverage 

 
Figure 13: Point cloud with over 6 minutes of GNSS data removed (no ICP) 

 
Figure 14: Point cloud with same outage with ICP updates added 
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5. CONCLUSIONS  
In summary, this paper describes the integration of GNSS/INS and LiDAR measurements for the purposes of 
improving post-processed sensor EO trajectory determination, especially in GNSS-denied environments such 
as urban canyons or indoors.  Under these circumstances, users who rely on the afore-mentioned EO 
information for geo-referencing of point clouds could certainly benefit from the enhanced positioning depicted 
here. 

The GNSS/INS/LiDAR workflow has been described in the context of a commercial GNSS/INS post-processing 
package.  LiDAR measurements are utilized in an in-house developed ICP algorithm and the resulting scan-to-
scan translation vectors employed to update the GNSS/INS computation in a loosely-coupled fashion.  We also 
characterize the significant effort made to improve robustness and computational efficiencies in the ICP 
procedure. 

Field test results were obtained from production-style datasets shared with us from organizations in the LiDAR 
industry.  We have included mobile mapping, indoor and aerial UAV examples and show the differences in 
coordinates between data sets with and without GNSS outages.  It can be seen that even in the complete absence 
of GNSS signals for hundreds of seconds, the inclusion of terrestrial LiDAR measurements in an ICP procedure 
enables us to maintain maximum estimated errors of some 0.50 m.  It is acknowledged that this is of limited 
benefit in an open-sky survey, but is a 2-4 times improvement over the 1-2 m RMS accuracy we observe in a 
severe downtown urban situation where MEMS INS have been employed.  Additionally, GNSS/INS positiong 
can be subject to sudden changes in the output due to the appearance and re-appearance of satellites.  These 
discontinuities can be ameliorated through integration of LiDAR.  Finally, we show that hosting of the ICP 
process on readily available graphics cards, makes processing a practical task. 
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