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ABSTRACT 
 
Inertial integration with various systems has been 
investigated since the inception of inertial navigation 
devices more than 50 years ago. A natural integration for an 
inertial system is GPS, and this type of coupling has been 
investigated for the last 20 years since GPS was developed. 
Two years ago, NovAtel Inc. began to develop a prototype 
of such an integrated system. The components of the 
prototype system were a Honeywell HG1700 IMU and first 
an OEM3 followed by an OEM4 GPS receiver. The 
objective of the development was to provide a tightly 
integrated system at reasonable cost, which could give 
positioning continuously at a 10 cm level provided the GPS 
signal outages were of short duration. The approach taken 
during the system development was to take advantage of 
the existing GPS navigation algorithms and supplement 
these with a set of modified inertial algorithms taken from a 
software suite (Kingspad) provided by the University of 

Calgary and to use these in a decentralised process that 
could run on the target processor on the OEM4 board. The 
result of this development is a modular system, which 
fulfils the accuracy requirements noted and resides entirely 
on the OEM4 receiver.  
 
During the system development, investigations into the 
observability of system components were made. In an 
inertial system, the measurements of the system are used to 
provide the coefficients of the differential equation set 
which describes the dynamics of the system errors. Noise 
on these measurements tricks the Kalman filter into a 
condition of “false observability”. This condition was 
investigated and a solution to this problem was 
implemented. In addition, modelling approaches related to 
the HG1700 were investigated and implemented. Finally, 
the feedback to the GPS filter to aid its resolution was 
investigated and this was implemented.  
 
In this paper, the authors propose to describe the system 
architecture, the particulars of the system development 
noted above and to provide test results, which demonstrates 
the system performance in various environments.  
 
INTRODUCTION  
 
In areas where the satellite coverage is restricted for short 
periods of time, a serious shortcoming of a GPS only 
system in the unavailability of position and velocity data 
during those periods. In addition, the lack of GPS satellites 
for short periods of time can cause a serious degradation in 
the type of position information available even when 
satellites are visible. If the periods of visibility are too 
short, then the system will loose RTK availability entirely. 
For some applications the lack of accurate and continuous 
position information precludes the use of GPS as a 
navigation tool.  
 
In late 1998 NovAtel Inc. identified an opportunity to 
improve the navigation capabilities of a GPS only system 
by supplementing it with some kind of medium grade 
inertial unit. The idea of the supplementary system was to 
bridge gaps in GPS coverage, and to seed the resolution 
process in the RTK filter in order to help the filter resolve 
ambiguities faster. 
 
The initial approach was to use an OEM 3 (Millennium™) 
GPS receiver from NovAtel Inc. and an HG1700 AG11 
strapdown inertial unit from Honeywell and run the inertial 
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processing software on the NovAtel Inc PDC (data 
collector card) as a development platform until the OEM 4 
receiver was ready. However, the PDC card did not have 
enough throughput to reliably process the inertial data, so 
the PDC based prototype never did work properly. Instead, 
the PDC card became a data collection and time 
synchronisation unit and the processing software was 
developed on an offline platform until the final processing 
target, the OEM 4 was ready. The offline development 
program which resulted from this development path 
(Blackdiamond) runs on a windows based PC and provides 
more or less the same core capability as the real time (OEM 
4 based) software but has much more flexibility in terms of 
available output than the real time system. 
 
The algorithmic base of a large portion of the inertial 
software used was Kingspad, an inertial software suite 
developed over the last ten years at the University of 
Calgary under K.P Schwarz. Although the form of the 
software as it resides on the OEM 4 is different than that 
provided by the university, the project could not have 
succeeded without that knowledge base.  
 
In this paper the authors intend to describe the performance 
of the system and provide test results that validate 
performance specification. Furthermore, the authors will 
describe the architecture of the system, including the main 
hardware and software system components and how they 
interact. A detailed description of the inertial measurement 
processing will be provided, including the alignment 
process, the process that maintains the inertial system 
parameters (mechanisation), and the Kalman filtering 
process. The Kalman filter description will include details 
of the system dynamics definition, the derivation of the 
system noise components and the updating methodology.  
 
The Kalman filter experiences modelling errors in the form 
of a condition called “false observability” that is a result of 
noise injected into the Kalman filter transition matrix from 
the IMU measurements. An associated false observability 
condition occurs when the design matrix is dependent upon 
a set of system parameters that change during the normal 
estimation process.   
 
As mentioned previously, test results will be provided and 
this will be followed by some conclusions and 
recommendations. 
 
PERFORMANCE SUMMARY 
 
The system performance elements are the quantities that a 
user is interested in that the system can provide, namely 
position, velocity, attitude and their associated variance-
covariance matrices. In order to quantify the system 
performance, it is useful to describe it during various 
scenarios. The factors that must be considered include the 

GPS measurement types available currently and previously, 
and the current state of the system. The scenarios identified 
include alignment, alignment to steady state in the presence 
of either single point or differential carrier (RTK) GPS 
position measurements, and open loop performance after 
steady state has been achieved. Therefore, the specification 
is actually quite involved, and so only a subset of them is 
included here. That subset corresponds to the system 
performance after it has been through the coarse alignment 
and RTK measurements have been available while the 
system has been moving for at least 1 minute. The 
performance with and without GPS (open loop) is 
considered.  
 
Table 1: Position Accuracy with GPS 
GPS Position Type Accuracy (1 sigma) 
Stand Alone 0.5 to 2    m  
Code Differential 0.25 to 1  m  
RT-20 (Carrier Float) 0.05 to 1  m  
RT-2 (Carrier Fixed Integer) 0.02 m          
Post Processed 0.02 to 2 m  
 
Table 2: Velocity And Attitude Accuracy with GPS 
Item Accuracy (1 sigma) 
Velocity 0.007 m/sec  
Roll 0.013 deg 
Pitch 0.013 deg 
Azimuth 0.04  deg 
 
OPEN LOOP PERFORMANCE 
 
The AG11 IMU has a gyro drift of 1 degree per hour 1 
sigma, and a 1 millig accelerometer bias. The level of these 
system uncertainties dictate the open loop performance of 
the AG11 unless some estimates of these parameters can be 
made. In the NovAtel Inc. both gyro drifts and 
accelerometer biases are estimated to bring the error level 
in the system down to a level such that the GPS carrier 
ambiguities can be reasonably well defined after a GPS 
outage of 20 seconds. Since the performance of the system 
is so strongly influenced by the level to which the gyro and 
accelerometer biases can be estimated, open loop analysis 
results for both the uncalibrated and calibrated (steady 
state) systems are included. 
 
For the first 100 seconds of free inertial, the errors take on 
the characteristics seen in Figure 1 and 2 below. Figure 1 
shows the free inertial performance after a good 
initialization with RTK measurements but with no 
calibration history to reduce the errors in accelerometer or 
gyro biases. Figure 2 shows the open loop performance 
when the system has been well calibrated so that only 10% 
of the initial accelerometer and gyro biases are 
unnaccounted for. The position errors shown are taken from 



[14] and derived from error equations [11][12] that predict 
the effect of the various components seen on the figures.  
 
The reason that the open loop performance is important is 
not only to fulfill its function as a positioning device when 
GPS is unavailable or degraded, but also so it is accurate 

enough to successfully reinitialize the RTK filter. The 
target performance is to be able to reinitialize within 6 
seconds, provided the signal outage is less than 5 seconds. 
This makes the expected accuracy of the integrated position 
continuously better than 10 cm through momentary GPS 
outages provided the system is well calibrated.

 
Fig 1 Open Loop Performance with no calibration 

 
 
Fig 2 Open Loop Performance with well calibrated system 

 
 



The following Figure 3 shows the combination of all the 
deterministic position errors in an RMS plot that compares 

the calibrated and uncalibrated systems.  

 
Figure 3 Comparison of Deterministic Error RMS from all sources for calibrated vs Uncalibrated systems 

 
 
SYSTEM COMPONENTS 
 
The “system” consists of 4 sub-systems, namely the 
inertial, GPS, data collection and post-mission software 
sub-systems. The inertial sub-system is a Honeywell 
HG1700 tactical grade IMU. The GPS sub-system is a 
NovAtel Inc. OEM4 dual frequency GPS receiver whose 
software has been modified to process GPS and inertial 
measurements in a decentralised filter. The data collection 
sub-system time tags the inertial measurements with a GPS 
time accurate to 100 microseconds and saves measurements 
and processed data generated by the GPS sub-system. The 
post-mission software sub-system has the flexibility to 
either duplicate the processing carried out by the real time 
system or to process it in some other way. The post-mission 
software is also used to pre-test new developments before 
they are integrated into the real time system.  
 
The Honeywell IMU is a strapdown inertial measuring unit 
that uses a triad of accelerometers and ring laser gyros 
mounted orthogonally inside a compact 15 cm high by 15 
cm diameter cylindrical case to measure specific forces and 
angular increments experienced in the units body frame. 
Internally, delta velocity and delta angles are sampled at 
600 Hz. From these, coning and sculling compensations are 
generated and applied to accumulated delta velocities and 
angles that we incorporate in our navigation software at a 
100 Hz rate. The IMU can be either an AG11 (1 milli-g 
accelerometer bias, 1 degree/hr gyro drift) or AG17 (3 

milli-g accelerometer bias, 10 degree/hr gyro drift). The 
other system specifications for the two IMU units are the 
same, and they are included here from [1] because they are 
related to some of the modelling issues discussed later on. 
 
Table 3: HG1700 AG11 Accelerometer Specifications 
Accelerometer Parameters Description Magnitude 
Scale Factor Accuracy (ppm 1 sigma) 300 
Scale Factor Linearity (ppm 1 sigma) 500 
Bias. Milli-g 1 sigma 1 (AG11) 
VRE, micro g’s max 500 
Axis-Alignment Stability urad 1 sigma 500 
Axis-Alignment Stability  
(non-orthogonality) urad 1 sigma 

100 

Output noise m/sec 0.0024 
Velocity Random walk m/sec/rt-hr max 0.0198 
 
Table 4: HG1700 AG11 Gyro Specifications 
Gyro Parameters Description Magnitude 
Scale Factor Accuracy (ppm 1 sigma) 150 
Scale Factor Linearity (ppm 1 sigma) 150 
Bias. Deg/hr 1 sigma 1 (AG11) 
Axis-Alignment Stability urad 1 sigma 500 
Axis-Alignment Stability  
(non-orthogonality) urad 1 sigma 

100 

Output noise micro/rad 80 
Angular Random walk deg/rt-hr max 0.125 
 



The data collection saves measurements and processed data 
generated by the GPS sub-system.  
 
The post-mission sub-system serves as a development 
platform for the real time inertial/GPS software. It has 
much of the functionality of the real time process but none 
of the cycle time limitations associated with a real time 
process. So it can produce output records at any rate up to 
100 Hz in ASCII or binary that will contain all or any of the 
inertial system components referenced to one of several 
available reference frames. There are literally thousands of 
possible data combinations available to the user. 
 
The GPS sub-system is a NovAtel Inc. OEM 4 dual 
frequency receiver modified to incorporate inertial 
measurements in its navigation solution. It can provide 
L1/L2 range and carrier measurements capable of single 
point, pseudo range differential and carrier based 
differential positioning at a 20 Hz rate. When the inertial 

measurements are available it time tags these with a GPS 
time accurate to 100 microseconds and then uses a 
decentralised approach to generate a blended GPS/INS 
solution.  
 
The time synchronisation is quite clever. It depends on a 
counter within the MINOS4 correlation chip that is slaved 
to GPS time and has a resolution of 1 micro second. An 
interrupt service routine with a high priority waits for 
incoming data on the serial port linked to the HG 1700. 
When data is sent to the OEM 4 the ISR wakes up when the 
serial driver makes the first byte available and immediately 
reads the MINOS 4 counter and uses it to reconstruct the 
GPS time used to tag the inertial message. 
 
The system software architecture is shown on the following 
diagram: 
 

 
Diagram 1 GPS SubSystem Software Architecture 

 
 
The steady state process is described as follows: The 
inertial measurements are collected and time tagged in the 
IMU task. Then they are sent to and processed in the INS 
task at a 100 Hz rate to generate position, velocity and 
attitude. These are available for logging to the user, 
although there is a limitation on the amount of 100 Hz data 
that can be sent at once (one of raw, position etc.). Every 
time a 1 second boundary is crossed, an interpolated copy 

of the system components is generated. The position is sent 
to the RTKMATCHED task in case it needs to be used for a 
once only per resolution floating ambiguity filter 
initialization. If the system determines it is stationary, it 
signals to the INS KALMAN task to do a zero velocity 
update (ZUPT). If not, it waits until a position is available 
from one of the GPS filter tasks as determined by the 
BESTPOS task (but originating in either PSR POSITION 



FILTER task or RTKFAST task) and uses this position in 
INS KALMAN task to do a position update. After the 
update, the state is propagated up to the current time, 
applied to the system at the current time and reset.  
 
A detailed description of the inertial processing follows. 
 
INERTIAL PROCESSING 
 
The inertial/GPS integration software resides in evolving 
flavours on both the OEM4 GPS unit as well as on the post-
mission software suite. It consists of 4 functional sections, 
namely a type/frame sensor section, a coarse alignment 
section, a mechanisation section and a Kalman filter. The 
type/frame sensor and coarse alignment sections are 
executed in order during a stationary period at the 
beginning of every mission. The mechanisation section is 
executed once every 10 msec, and the Kalman filter section 
is typically executed once per second, although this can 
vary depending on the availability of GPS position 
measurements and ZUPTS.  
 
FRAME DETECTION  
 
Different applications can be satisfied with different grades 
of IMU, and different users have various installation 
constraints that make the usual z up, y front, x right body to 
vehicle frame relationship impossible to satisfy. So the 
type/frame sensor section has the function of determining 
the IMU model (AG 11 or AG17) type and of also ensuring 
that the selected xyz body frame assignment satisfies 
requirement that the y axis is not parallel to the gravity 
vector. The knowledge of the model is required to ensure 
the measurements are scaled correctly, to assign initial 
uncertainties to the attitude states after the coarse alignment 
is complete and to assign appropriate entries to the Q 
matrix during the Kalman filter process. To do this, the 
software makes the assumption that the system is stationary 
at start-up and that the model is AG 11. It then takes the 
ratio of the scaled length of the acceleration vector with the 
magnitude of normal gravity. Agreement within 20% 
indicates the model selection is correct, otherwise the 
system assumes the model is AG 17. The axis assignment 
(manufacturer’s body frame to user body frame) must be 
made if the IMU is mounted arbitrarily. So before the 
course alignment starts, the system picks one of six 
mappings of the manufacturer’s body frame to user body 
frame such that the z axis has the largest positive 
acceleration magnitude. The type and frame identification 
takes 5 seconds. Once the IMU type and frame mapping 
have been determined, the system can initiate a coarse 
alignment.  
 
COARSE ALIGNMENT 
 

The coarse alignment procedure follows [2] page 198. 
Given the user position, a triad of orthogonal vectors 
representing the local level frame can be specified. These 
vectors consist of the gravity vector, the earth’s angular 
velocity vector and the cross product of the first two. The 
same vectors transformed to the IMU body frame are 
measured by the accelerometers and the gyros in the IMU, 
and the cross product of the acceleration and angular rate 
vectors. So the 2 sets of three vectors can be concatenated 
to form 2 matrices Sl and Sb which are related by the 
transformation 
 
Sb = Rl

b Sl  
Or  
(Sb)T = (Sl)T Rb

l 
 
Where Rl

b is the rotation matrix used to transform a vector 
from the local level to the body frame, and Rb

l is its 
transpose. 
 
So Rb

l = ((Sl)T)-1 (Sb)T 
 
Once Rb

l is computed, the rotation matrix Rbe used in the 
system to relate the body frame measurements to the 
computational (ECEF) frame can be computed via  
Rb

e = Rb
lRl

e. In addition, the roll, pitch and azimuth 
elements can be generated from specific elements of the Rb

l 
transformation matrix, for example 
 
Roll = ArcSin(R3,2) = ArcSin(-fy/g) 
Pitch = ArcTan(-R3,1 , R3,3) = ArcTan(fx/g , -fz/g) 
Azimuth = ArcTan((fxωz – fzωx)/(ωgCos(ϕ)) , (ωfySin(ϕ) + 
ωyg) /(ωgCos(ϕ))) 
 
Where: 
fx, fy, fz are specific forces measured in the body frame of 
the IMU 
ωx , ωy ,ωz are angular rates measured in the body frame by 
the IMU 
ω is earth rotation rate 
g is the magnitude of normal gravity 
ϕ is latitude. 
 
After the coarse alignment the attitude accuracy for the 
AG11 is limited by the accelerometer biases in the case of 
horizontal alignment to 0.06 degrees and by gyro biases in 
the case of alignment about the vertical axis (azimuth) to 6 
degrees. The AG17 horizontal and vertical axis alignment 
accuracy is 0.18 degrees and 45 degrees (at latitude 50 
degrees). The azimuth is particularly inaccurate because of 
the high gyro drift to earth rate ratio. The coarse alignment 
accuracy is limited by the gyro bias uncertainty but 
improves over time as the ratio of the averaged noise on the 
accumulated gyro measurements is reduced. This is 
described by:  
 



σAz = 57.29577 ArcTan((σb
2+η/t)1/2/(ωeCos(ϕ))) 

Over time, the azimuth uncertainty decreases to its limit as 
shown in Figure 4 below made for the AG11 case in which 

the gyro noise (RMS) is 9 micro radians per 10 msec 
sample and the gyro drift uncertainty is 1 degree per hour.  

 
Fig 4:  Theoretical Alignment Accuracy (9 Micro Radian Noise per Sample, 1 deg Bias) 

 
 
It is clear from the equation above used to compute 
azimuth, that the alignment accuracy over time will be 
dependent on the noise on the gyros, and in particular on 
the noise on ωx when the body frame is aligned horizontally 
such that ωx points east. It turns out that the specified noise 

level on the HG1700 is in many cases very conservative, 
and in fact the system has a range of measurement noise 
that varies by a factor of 10. The effect of varying the noise 
level on this term is shown on Figure 5 below.  
 

 
Fig 5:  Alignment Accuracy Noise Dependence (1 degree bias) 

 



The accuracy of the alignment over time has such a 
dependence on the level of noise that in order to have 
something close to an optimal system, the noise level on the 
measurements must be known and applied. This statistic is 
measured during the frame determination process, and is 
used in the estimation of the initial attitude accuracy as well 
as in the application of process noise during the Kalman 
filter propagation. 
 
The coarse alignment takes up to 55 seconds, but if the 
system starts moving before the 55 seconds are up, the 
software will begin the navigation phase automatically. 
 
In the real time software, the user has the capability at any 
time, but presumably will only use it when the system isn’t 
moving, to initiate a coarse alignment and this has the 
function of re-initializing the system parameters as well as 
restarting the coarse alignment process.  
 
MECHANISATION 
 
Once the coarse alignment is completed, the system has a 
set of initial conditions that it can combine with the raw 
IMU measurements to keep the system parameters current. 
This process is described as the system mechanisation. The 
function of the mechanisation process is to propagate the 
inertial system parameters from the ending boundary of the 
previous measurement interval to the end boundary of the 
current measurement interval. The parameters include 
position, velocity and attitude, and the propagation uses the 
measured delta velocities and delta angles in the solution of 
the fundamental differential equations: 
 
First 
dRe

b/dt = Re
b( Ωb

ei + Ωb
ib) 

 
Then 
d2re/dt2 = Re

b fb + ge – 2 Ωe
ie dre/dt 

 
The first equation is solved in order to maintain the attitude 
relationship between the body and computational frame (in 
this implementation ECEF). In this process the attitude is 
maintained as a quaternion, which is somewhat more 
efficient than a 9 element direction cosine solution, but then 
that transformation matrix Rb

e has to be recomputed every 
sampling time from the quaternion elements via: 
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The second equation is solved in order to maintain the 
system’s position and velocity. This 2nd order equation can 
be used to generate 2 first order equations by introducing 
the vector ve to represent velocity in the e-frame. 

Then 

dre/dt = ve 
dve/dt = Re

b fb + ge – 2 Ωe
ie dre/dt 

 
In the equation for dve/dt, the effect of gravity and Coriolis 
force are removed from the measured specific forces 
transformed to the ECEF frame via fe = Re

b fb. The basic 
reference for the mechanisation method was [3] and [4].  
 
KALMAN FILTERING 
 
A Kalman filter is a procedure that broadly consists of two 
steps used to optimally estimate a series of parameters that 
describe the behaviour of a system. The system in this case 
is the inertial system and the parameters are those that must 
be known for the inertial system behaviour to be 
predictable. The two steps are labelled for the purpose of 
this paper the propagation step and the update step. The 
implementation of the two steps presupposes a system 
description consisting of a set of state variables that 
describe errors in the system as well as an associated 
variance covariance matrix that describes the current 
knowledge level of the state. It also presupposes a set of 
observational data that can be related to some elements in 
the state via some kind of functional relationship that can 
be put into the context of a linear relationship. This section 
will describe the system, the observation set and its 
relationship to the system, the propagation, with emphasis 
on the dynamics and stochastic characteristics of the 
system, and the updating step. The equations are well 
known and are repeated here from [6][7] just for easy 
reference. 
 
Propagation step: 
 
State: x(-) = Φx(+) 
Covariance P(-) = ΦP(+)ΦT + Q 
where x is the state vector (+) after update, (-) after 
propagation 
P is the state variance covariance matrix  
Φ is the transition matrix, the time solution of the dynamics 
matrix describing the dynamics of the system 
Q is the matrix describing the time propagation of the 
spectral densities of the state elements. 
 
Update step: 
 
K = P(-)HT(HP(-)HT+R)-1 
x(+) = x(-) + K(z-Hx(-)) 
P(+) = (I-KH)P(-) 
where z is the observation vector 
R is the observation variance covariance matrix  
H is the linear relationship between the observation and 
state vector 
K is the Kalman gain matrix 



The system (modified from [4]) consists of a state vector 
and its associated covariance matrix. The state represents 
system errors and has 18 elements, 3 for each of position, 
velocity, attitude, gyro biases and accelerometer biases and 
IMU to GPS antenna offsets. The position, velocity and 
attitude states model errors in the ECEF frame. The bias 
and offset states model errors in the body frame. Only the 
filter in the post mission version has been modified to 
estimate the IMU to GPS antenna offset. The position, 
velocity, attitude and offset states are modelled as random 
walks and the bias states are modelled as Gauss-Markov 
states.  The state vector in the Kalman filter is initially 
assumed to be the zero vector because any error estimates 
are initially (and in fact after every update) applied to the 
parameters (position, velocity, attitude and bias terms) that 
are used to maintain the system in the mechanisation 
process.  
 
The update step uses the linear relationship between the 
state and observation vectors in conjunction with the 
covariance matrices related to those vectors to determine 
both corrections to the state vector and to the state 
covariance matrix. 
 
PROPAGATION STEP  
 
The propagation step uses knowledge of the state dynamic 
behaviour determined from the physics of the system and 
the stochastic characteristics of the system over time to 
propagate the state and its covariance from some past time 
to the current time. The dynamics and stochastic properties 
of the system are described in more detail in this section. 
  
The dynamics matrix for the modified (18 state) system is 
the following: 
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b term is required for the differential equation  
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which links the velocity error rate to error in the body frame 
offset between the IMU centre and the GPS antenna. 
N is the matrix tensor of derivatives the normal gravity 
vector parameterized in the ECEF frame with respect to 
position at the user’s current position. It links errors in 
velocity error rate to errors in position. 

F is a skew symmetric matrix of specific force elements 
parameterized in the ECEF frame.  These are generated 
from the raw delta velocity measurements (transformed to 
the ECEF frame) accumulated over ½ second time 
intervals, which is the delta time used for the state 
covariance propagation. 
 
Rb

e is the rotation matrix that transforms vectors in the body 
frame to the ECEF frame. So gyro drift states modelling 
IMU biases are transformed to the ECEF frame and applied 
directly to the attitude error rates and similarly the 
accelerometer bias errors are transformed and applied to the 
velocity error rates. 
 
(dδv/dt)e = Re

b da relates the velocity error rate in the ECEF 
frame to accelerometer biases in the body frame. And the 
transformation 
(dε/dt)e = Re

b dg relates the attitude error rate in the ECEF 
frame to gyro biases in the body frame. 
 
βg  and βa are time constants of the Gauss-Markov 
processes which model the gyro and accelerometer bias 
states respectively. These are derived from the HG1700 
accelerometer and gyro random walk characteristics.  
 
The Kalman propagation  
 
P(-) = ΦP(+)ΦT + Q 
 
of the covariance is done once per ½ second because a 1 
second delta time led to too much degradation in high 
dynamic environments. A ½ second propagation makes the 
assumption of constant coefficients in the dynamics matrix 
a reasonable one and furthermore allows for a first order 
solution of that matrix system of differential equations so 
that Φ = I+∆tF is a reasonable approximation. There is no 
state propagation because the state is fed back into the 
system after every update and set to zero. The real time 
system reduces the computation required in the 2 Hz 
propagation by only using the non-zero elements of the 
transition matrix during the P matrix pre and post multiply. 
 
The initial P matrix elements are assigned based on the best 
knowledge available after the system alignment. This is a 
function of the system parameters, the type of GPS position 
available and the quality of the alignment including the 
time in stationary mode and on the noise level of the IMU 
measurements used in the alignment.  
 
The Q matrix elements are generated from formulas that 
incorporate the HG1700 system specifications (either the 
AG 11 or AG 17 models). The relevant system parameters 
used to generate Q elements are the accelerometer and gyro 
scale factor accuracy and linearity, the velocity random 
walks the angular random walk, accelerometer and gyro 
output noise. Parameters that have not been accounted for 



are vibration rectification error (VRE) for the 
accelerometers and axis alignment stability for both the 
accelerometer and gyro axis. The later is a short coming of 
the system but should not affect the filtering performance 
provided that the temperature of the unit is stable and 
provided that the primary output required is position and 
not attitude. 
 
Accelerometer and gyro noise values in the specification 
are quite conservative, and the actual noise values measured  
varies a lot from the specification (by a factor of 10) and a 
lot between one axis and another (by a factor of 3 or 4). 
This statistic (noise level) is computed before the alignment 
(during the type/frame detection portion of the process) and 
applied to generate the initial alignment precision as well as 
process noise values for the attitude and velocity states. 
 
The IMU measurement noise ηacc and  ηgyro contributes q 
values for the position (see [7]), velocity and attitude states     
follows: 
 
qp = (∆t3/3)*10*ηacc (m/sec)2/sec 
qpv = (∆t2/2)*10*ηacc (m/sec)2/sec 
qv = ∆t*10*ηacc (m/sec)2/sec 
qatt = ∆t*10*ηgyro (rad/sec)2/sec 
 
The gyro and accelerometer bias terms are modelled as 
Gauss-Markov states.  The system specifications for the 
bias terms describe a random walk process. So the two 
processes are reconciled by trial and error with a starting 
point for the q specified as: 
 
qg  = (0.042/57.29577)2/3600 (rad/sec)2/sec 
     =1.469e-10 (rad/sec)2/sec 
for the gyro and 
qg  = (0.0198/(3*60))2 (m/sec2)2/sec 
     =1.211e-8 (m/sec2)2/sec 
The time constant for both of these processes was selected 
as 4 hours, so 1/β = 14400 seconds. 
After some experimentation modified q values of 
qg  = 4.08e-14 (rad/sec)2/sec 
and 
qg  = 3.365e-12 (m/sec2)2/sec  
were selected 
 
The velocity and attitude states are modelled as random 
walks and the basic process noise values applied to these is 
a function of the noise levels on the accelerometers and 
gyro measurements respectively. But accelerometer and 
gyro scaling errors are not modelled as states in the system, 
and so these also will contribute to the uncertainty of the 
velocity and attitude states in the presence of acceleration 
and system rotation. In the case of the accelerometers it is 
not possible to distinguish the scaling and bias errors while 
the system is stationary. Therefore, in the presence of 

gravity, the vertical axis accelerometer bias becomes 
observable but part of the bias error is the result of the 
scaling error that axis will have. So during initialisation, the 
system retains the average specific forces measured while 
the first estimates of the accelerometer biases are made. 
Later, when the system starts to move, the specific forces 
measured by the accelerometers are differenced from the 
initial specific forces and these differences are used in the 
following algorithm that describes how the velocity state 
covariance is modified to take accelerometer scaling errors 
into account. 
 
If the system had modelled scaling errors, then the 
uncertainty in the scaling would propagate to the velocity 
according to: 
 
P(-) = (I+∆tF) P(+)(I+∆tF) + Q 
 
where  
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Then the propagation will increase the uncertainty on the 
velocity states according to  
 
Pv(-) = ∆tRb

eF∆Psa(+)F∆
TRe

b 
 
Where F∆ is the diagonal matrix of specific force 
differences and Psa is the scale factor uncertainty, a 
diagonal matrix which doesn’t change since there is no 
scale factor estimation. For this the HG1700 specification 
of accuracy and linearity is combined  to give the diagonal 
elements of Psa = σsa

2 = (583/1,000,000)2. 
 
Therefore every propagation, 
 
 Qv = ∆tσsa

2Rb
eF∆ F∆

TRe
b 

 
is applied to the velocity state elements of the P matrix. 
 
The gyro scaling errors affect the attitude states in a similar 
manner, and based on the missing state propagation of gyro 
scale factor uncertainty to attitude uncertainty, the 
following  Qa is applied to the attitude state covariance: 
 
Qa = ∆tσsg

2Rb
eΩeb

b
∆ Ωbe

bRe
b 

 



where  
σsg = 212/1000000 is the manufacturer’s gyro scaling 
specification combining accuracy and linearity terms, 
Ωeb

b is the skew symmetric matrix of the instantaneous 
rotation of the ECEF frame with respect to the body frame 
parameterized in the body frame. 
 
This completes the description of the Kalman filter 
propagation step.  
 
UPDATE  STEP 
 
The measurements in the decentralised approach are either 
GPS antenna position or velocity in the case of the ZUPT 
measurement. In this case, some of the state elements 
(position and velocity) are observed directly by the GPS or 
ZUPT observations. 
In the velocity update case, the H matrix for the update is  
H = [0,I,0,0,0,0], 
and in the position update case it is 
H = [I,0,0,0,0,Rb

e] 
 
The velocity update is triggered when a set of conditions  
based on the IMU measurements are met. First, the 
averaged measured acceleration vector magnitude 
difference from the magnitude of the gravity vector has to 
be within a threshold. Second the averaged measured 
angular rate vector magnitude has to be below a threshold. 
Then a ZUPT is initiated with an observation covariance 
based on the thresholds used to detect the stationary 
condition the first place.  
 
The position update takes place when the GPS filter 
provides a position and associated covariance matrix. Not 
including some of the transient position types, there are 4 
different position types [8][9][10] all with different 
accuracies and different time correlated errors with 
different time constants. These are summarized in the 
following table along with the expected accuracy, 
predominant error source and rough correlation time 
constant. 
 
Table 5: GPS Measurement Error Characteristics 
Type Accuracy (m) Time 

Constant 
Error 
source 

Single Point PSR 3  5 min Iono/MP 
(PSR) 

Differential PSR 1 3 min MP PSR 
Carrier Float 1 to 0.20 3 min MP/Conv  
Carrier Fixed 0.02 3 min MP (car) 
 
The  multipath error (MP) related time constants are 
reduced significantly when the system is moving, down to 
about 5 seconds except for the carrier float solution type 
which has time correlated errors as a result of ambiguity 

convergence errors. The pseudo range filters don’t increase 
the measurement correlation in of themselves because they 
are single epoch least squares filters, rather than Kalman 
filters with some time history from clock rate or velocity 
states. The carrier fixed position type also has long time 
constant errors associated with carrier multipath, but the 
amplitude of these errors is small enough so they can be 
ignored.  Time correlated measurement noise generates a 
modelling error in the filter if it is not taken into account. 
One way to do this is to add additional states to the filter 
which are used to estimate the slowly varying correlation 
error, but in a real time system additional states risk 
increasing  the computational burden too much. Instead, the 
measurements are de-weighted for 9 out of 10 observations 
when the system is stationary or if the system is in carrier 
float mode.  Otherwise, the covariance matrices provided 
by the GPS position filters are used directly in the Kalman 
update. 
 
In many environments, the system experiences severe 
multipath errors (urban canyons are one example where the 
predominant or even only signal may be a reflected one). 
To prevent the positions generated with these from 
corrupting the inertial system parameters via the Kalman 
update, a six sigma bound is placed on the innovation 
before it is used to update the filter. 
 
This completes the description of the Kalman filter update 
step. 
 
MODELLING ISSUES 
 
The Kalman filter is subject to modelling errors that occur 
when some significant error source has either been 
misrepresented or even ignored by the filter designer. 
Typically these are corrected by modifying the state vector 
and its associated dynamics matrix or by modifying the Q 
matrix by adding additional system noise.  Two modelling 
errors that occurred during this development had nothing to 
do with incorrect modelling of the states, but instead were 
dependent on the generation of the transition matrix Φ and 
the design matrix H. We call this “false observability”, and 
will show that it is the result of IMU measurement noise in 
the transition induced case and on coincident state 
convergence in the design matrix case. 
 
Let’s look at the transition matrix generation first. The 
transition matrix is generated as a solution of the dynamics 
matrix F vis a vis Φ = ∆t F. Subsequently, the P matrix is 
propagated according to P(-) = (I+∆tF) P(+)(I+∆tF) + Q. 
Then, during the update, the gain matrix is generated via  
K = P(-)HT(HP(-)HT+R)-1 
In this implementation H is a 3 by 18 matrix which is zero 
except for the first and last three columns that are the 
identity and the Rb

e matrix respectively. So in order for the 
gains to be non-zero, the off-diagonal terms in the first 



three rows of the P matrix must be non-zero. In order to 
simplify the argument, assume that the system is perfectly 
aligned to the local level frame at the equator on the 
Greenwich meridian, so the body, ECEF and local level 
axis parallel.  Assume further that the IMU and antenna are 
co-located so that no offset sates need be estimated, and 
finally that the position is known so that position states 
aren’t estimated. Finally, assume the earth has stopped 
rotating. Then ask the question, “If the system is stationary, 
what is observable via a velocity update?”.  
 
Under these assumptions Re

b = Rl
b = I and the specific force 

vector representation in the body, ECEF and local level 
frame is f = [0,0,g]T. Based on this scenario, the system of 
differential equations describing the changes of the error 
states over time is: 
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So the transition matrix related to the dynamic matrix will 
be (for dt = 1.0) 
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and if the velocities are directly observable, the observation 
matrix H will be 
 
H = [I,0,0,0]T 
 
The criteria that must be satisfied if all 12 of the states in 
the given system are observable is that the matrix  
 
Ξ = [ HT | ΦTHT |ΦT2HT | ΦT3HT]  
 
must be full rank [6]. Expanding Ξ based on the system 
transition matrix gives 
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From this it is clear that there are elements in the system 
that are not observable as long as the transition matrix is 
constant because the linear combination of columns C4+C2-
2C3 gives the column [0]12x1, which indicates the matrix Ξ 
does not have full rank.  
 
If the system moves (accelerates and rotates), the columns 
are no longer linearly dependent, and all the elements in the 
state become observable to some degree or another. But if 
the system is stationary, the system attitude accuracy is 
limited by the uncertainties in the gyro and accelerometer 
biases. If the uncertainties in the biases were not limited, 
then the observability matrix shows that the system 
alignment could never be useful if the system is stationary. 
 
The problem that this theoretical analysis uncovers is that 
the attitude variance estimate after a coarse and fine 
(Kalman filter) alignment is much smaller than the theory 
indicates it should be. The azimuth error during the 
alignment is mainly influenced by the noise on the angular 
measurements and by the bias on the gyro. The equation 
linking these three elements is: 
 
σAz = 57.29577 ArcTan((σb

2+η/t)1/2/(ωeCos(ϕ))) 
 
Where σb is the gyro bias in rad/sec 
ωe is the earth rate in rad/sec 
ϕ is the latitude 
η is the random walk error for 1 second 
 
The limit of this expression as t increases without bound is  
 
σAz = 57.29577 ArcTan(σb/(ωeCos(ϕ))) 
 
that for a bias of 1 degree per hour and a latitude of 51 
degrees is 6.0 degrees. 
 
The following figure shows the decrease in the azimuth 
standard deviation for a stationary system resting on the 
bench. The theoretical accuracy estimate for the azimuth is 
also plotted. The accuracy estimate for the azimuth is 
generated from the Kalman filter state covariance matrix. 
 



Figure 6 Theoretical vs Filtered Azimuth Accuracy Estimate 

 
 
Now the theoretical uncertainty limit of 6.0 degrees is much 
larger than the 3.6 degrees which the filter has determined. 
One could argue that the reason the filter has so much more 
success is because the gyro drift elements are estimated in 
the filter, so the element σb is decreasing so the azimuth 
uncertainty is also decreasing. But, it turns out that the real 
reason the estimated accuracy is decreasing is that the noise 
level on the element of F in the dynamics matrix F makes 
that sub-matrix non-constant even when the system is 
stationary. This can be verified by computing the average 
observation on a 10 msec interval based on the entire data 

set and using this ideal and constant set of delta velocities 
and delta angles as inputs to the mechanization equations in 
place of the measured values. The signal portion of the 
original measurements (gravity and earth rate) is identical 
to the constant set, but the constant set has no measurement 
noise. The only difference between the mean value 
measurements and the real ones is system noise on the real 
measurements.  The standard deviations of the system state 
parameters related to attitude, gyro and accelerometer 
biases are shown on the following plots.   
 

 
Figure 7 Filtered Azimuth Accuracy Estimate with and without noise on F elements 

 



The attitude comparison, shown above, shows that the 
limiting azimuth standard deviation for the noise free case 
is 5.25 degrees compared to a final azimuth error estimate 
of 3.68 degrees for the real measurement case. The 5.25 
degrees is more precise than the theoretical limit of 6.0 
degrees. The reason this happens is that the horizontal gyro 
biases are indeed slightly observable, so the standard 
deviation of the “east” gyro (see note 1 below) is slightly 
smaller than 1 degree per hour. The steady state “east” gyro 
bias uncertainty (see plot below) of 0.855 degrees per hour 
causes a convergent azimuth error uncertainty of  5.17 
degrees which agrees closely with the attitude (from mean) 
error uncertainty seen in the plot above.  
 
A secondary observation related to this discussion is the 
accuracy of the “north” gyro drift error is clearly observable  

and in fact the x gyro drift uncertainty approaches 0.15 
degrees per hour. The “east” gyro is not observable because 
an “east” gyro bias will have the same effect over time on a 
“north” axis accelerometer as an azimuth misalignment. If 
after 300 seconds or so of “north” gyro bias estimation, the 
IMU is rotated 90 degrees so the gyro uncertainty is now 
predominantly in the north direction rather than east, then 
the stationary alignment could continue and in the end 
generate a steady state azimuth error of 0.91 degrees. 
 
Note 1:  The gyro drift is associated with the body rather 
than the local level frame but the y gyro in the body frame 
coincidentally points east but even if it didn’t, there would 
be a composite “east” gyro whose accuracy impacts directly 
on the azimuth accuracy because the effect of both of these 
errors on the “north” accelerometer axis is identical.

 
Figure 8 Effect of Measurement noise on Gyro Bias Estimated Uncertainties 

 
 
The pitch and roll accuracies are identical in both the real 
data case (0.02 degrees after 85 seconds) and the mean data 
case (0.055 degrees after 30 seconds). The horizontal 
accelerometer biases cause identical acceleration errors 
while the system is stationary as do horizontal attitude 
errors. This is described by the equation: 
 
e = ArcSin(b/g) 
  
This indicates that an accelerometer bias of 1 millig should 
produce a roll or pitch error of 0.057 degrees.  This agrees 
closely with the horizontal accuracy of both the roll and 
pitch of the mean observation system (0.055 degrees), and 
this corresponds even more closely with the steady state 
estimated accelerometer bias of 0.00949 m/sec2. The roll 

and pitch accuracy of the real (noisy) observation system is 
far more optimistic at 0.02 degrees. 
 
The problem of transition matrix false observability can be 
alleviated to a certain degree by averaging the specific force 
observations used to generate the F sub-matrix of the F 
matrix. When this low pass filtering is put in place, the 
standard deviation of the azimuth, after a long stationary 
alignment reaches a steady state of between 4.5 and 5 
degrees rather than the typical unfiltered steady state value 
of between 1.5 and 2 degrees. This is demonstrated in 
Figure 9 below that compares the fine alignment process 
with and without a low pass filter on the raw measurements 
while the system is stationary. 

 



Figure 9 Effect of Low Pass Filtering to remove Measurement noise 

 
 
The second case of false observability occurs because in the 
H matrix, there is a component Rb

e that rotates the 
estimated IMU to antenna offset from the body to the ECEF 
frame. During convergence, and depending on the quality 
of the coarse alignment, the azimuth component of the Rb

e 
matrix can vary by as much as 50 degrees. This causes the 
gain elements related to the normally unobservable portions 
of the offset states to become non-zero and a resulting 
reduction in the variance of the offset elements in the P 
matrix. As a result, when the system actually does start to 
move, the offset vector is slow to converge and often to the 
wrong value. This is a variation of the problem in an 
extended Kalman filter (see [7] for example) in which 
errors in the trajectory generates errors in the H matrix that 
cause 2nd order state errors. The approach used to solve this 
problem is to use the same initially defined Rb

e matrix 
throughout the static portion of the fine alignment. Then the 
theoretically unobservable portions of the offset states 
remain unobservable until the system starts to move and the 
associated rotation is reflected in the P matrix off-diagonal 
terms, which correctly allows the offset state elements to 
become observable. 
 
TEST RESULTS 
 
There are results from 3 tests presented in this paper. The 
first set of test results provided is intended to show that the 
position provided by the integrated solution satisfies the 
requirement that the position error follows the curve of the 
deterministic error shown on Figure 3, and that the standard 
deviations for the open loop position represent the errors 
reasonably well. The second set of test results is intended to 
demonstrate the improvement the integrated system has 

over a stand alone GPS receiver in the time it takes to fix 
integer ambiguities. Finally, a third set of test results is 
intended to give a qualitative measure of the system’s 
navigation capability through some of Calgary’s urban 
canyons.  
 
The rate of error growth in the absence of GPS 
measurement updates is shown on Figure 10 and 11 below. 
These were generated off line by the Blackdiamond post 
mission software. The data was collected north of Calgary 
near Balzac on August 12, 1999. The route selected was an 
inverted “L” shaped baseline which went north roughly 5.5 
km., then east the same distance. The satellite coverage was 
very good, and in fact there were only 200 seconds out of 
about 4500 that did not have RTK GPS positions. Two runs 
with stops every 3 minutes were made and the driving 
speed was 100 km/hr. The open loop accuracy is seen by 
comparing the inertial positions with the GPS RTK 
positions in places where GPS is not used to update the 
system. Since the coverage was uniformly good, the system 
had to be artificially restricted from using the available 
GPS positions. The behaviour of the calibrated system was 
more interesting, so the open loop data was taken once the 
system had estimated its biases. This occurred about 1000 
seconds after the system began to move at 145285, but the 
open loop test wasn’t initiated until 146860 because that 
was the last time RTK was unavailable. On intervals of 120 
seconds after that time, 20 seconds of position 
measurements provided by the OEM4 are used to generate 
misclosures but these are is not used to update the system. 
The position misclosures show the error in the free inertial 
system, and the standard deviations show the expected 



position error in the system. The misclosures and standard 
deviations have been transformed to the local level frame. 

 
 

 
Fig 10 Open Loop INS position difference with GPS RTK 

 
 
The Figure 11 shows a detail of a typical set of open loop 
position errors. The errors are well represented by the 
reported standard deviations, and those are very close to the 

predicted 1 sigma errors for a well calibrated system seen 
above on Figure 3. 
 

 
Figure 11 Detail of Open Loop Position error 

 



 
The following plot shows a comparison of the position 
consistency of the combined INS/GPS system and a GPS 
only system. The GPS and the combined system are 
independent except they are processing signals taken from 
the same antenna. Both GPS units are operating in single 
point mode. When less than 4 satellites are available, no 

GPS position is shown. The data was collected in the urban 
canyons of downtown Calgary. The buildings in the area 
range in height between 20 to 70 storys and are often joined 
by elevated pedestrian walkways which further obstruct the 
satellite coverage. This is evidenced by the long intervals 
with no GPS position availability. 

 
Figure 12 Comparison of GPS only and Combined INS/GPS in an Urban Canyon Setting 

 
 
A major functional requirement for this system is the 
proposed capability of the combined filter to provide 
enough information to the GPS RTK filter to help it resolve 
ambiguities quickly and reliably. Preliminary tests over the 
last 6 months have shown this is possible provided the GPS 
signal blockage is not too long. A test conducted for the 
purpose of this paper demostrates the enhanced resolution 
capability that the integrated system has. The test was 
carried out on the Deerfoot trail, a major north south 
freeway just east of the NovAtel Inc. office. The test 
equipment included the integrated OEM4INS system and a 
standard OEM4 in the test van and an OEM4 base station 
on a known point, plus radios capable of transmitting the 
RTK base observations to the van over a distance of about 
2 kilometres. Both GPS receivers in the test van were 
connected via splitters to both the GPS antenna and the 
differential serial line from the radio.  
 
The portion of the Deerfoot trail used has two overpasses 
spaced less than 2 km apart. The procedure used was to 

collect the data while driving in a loop south on the west 
lane under the south overpass, north on the east lane and 
under the overpass and repeat many times. The difference 
in position standard deviation between the OEM4INS 
combined solution and the control GPS only standard 
OEM4 solution shown in Figure 12 shows the effectiveness 
of the OEM4INS system in not only maintaining very good 
accuracy throughout periods of brief obstructions but also 
in helping the RTK filter in the combined system to resolve 
ambiguities. The combined resolutions were verified to be 
correct by comparing those resolved position with those of 
the control OEM4 receiver once the resolutions had been 
made there. The combined system took 250 seconds to 
initialize after start up, but after that time the height 
standard deviation was always less than 0.12 metres. 
During the same period (1954 seconds including 12 passes 
under one overpass or the other), the standard OEM4 had a 
height standard deviation of 0.30 metres or more for 891 
seconds or 45% of the time. The following graph shows the 
standard deviation comparison over time. Note that the 



combined system has a scale (left hand side) which is 100 
times smaller that the scale for the GPS only height 

standard deviation. 
 

 
Figure 13 Standard deviation comparison Combined (OEM4INS) and OEM4 GPS only 

 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
Based on this paper, a number of conclusions can be made: 
 
1) The HG1700 models AG11 and AG17 have been 

successfully integrated onto the NovAtel Inc.OEM4 
GPS receiver. 

2) To achieve this, a decentralized filter architecture was 
adopted. The major components include the various 
GPS (pseudo range and RTK) filters and the INS filter.  

3) Position update information is provided to the INS 
filter from the best position available from the GPS 
filters. Some deweighting is used in certain 
circumstances to reduce the effect of correlated 
measurement noise on postion measurements used to 
update the INS filter. 

4) Position information from the INS filter is used to 
provide a once per resolution initialization to the 
floating ambiguity portion of the RTK filter. 

5) The OEM4INS system can use either an AG11 or 
AG17 model of the HG1700. The system detects which 
model of inertial system it is linked to and adapts itself 
accordingly by varying both the scaling of the 

measurements, the initial state accuracy estimates and 
the levels of system noise. 

6) The OEM4INS system includes a frame detection 
component to ensure the y axis of the body frame is not 
aligned with the gravity vector. 

7) The observability of the initial azimuth component of 
the attitude is very dependent on the level of INS 
measurement noise, and this varies significantly 
between different IMUs and from the specification. In 
order for a reasonable estimate of the accuracy of the 
initial alignment to be made, noise level estimates are 
made while the system is stationary prior to the coarse 
alignment process. 

8) A condition called “false observability” causes the 
azimuth standard deviation to be smaller than it should 
is a result of noise on the inertial measurements. This is 
aleviated by low pass filtering the measurements while 
the system is stationary. 

9) A secondary false observability condition affecting the 
estimation of the antenna offset is the result of 
convergence of the attitude state and its changing effect 
on the measurement model. The solution to this 
problem is to fix the body to ECEF rotation matrix 



used in the measurement model until the system starts 
to move. 

10) System noise is added according to both the component 
specifications (documented and measured) of the 
HG1700 and the dynamic enviroment the system is in. 

11) The position accuracy measured during testing closely 
reflects the predicted accuracy resulting from the error 
analysis of the system that is the foundation of the  
system specification. 

12) There are certain measures of success which have been 
verified directly, while other measures have been 
verified only indirectly. The improved position 
accuracy of the system over a stand alone GPS receiver 
has been verified directly as has the system’s capability 
to significantly reduce the resolution time. The 
measures which have been verified only indirectly are 
the systems capability to estimate other system 
parameters such as velocity and attitude which are also 
of potential interest our clients in the navigation 
community, and also parameters such as accelerometer 
and gyro biases which may not be of any interest to our 
clients, but will be of importance to getting optimal 
performance out of the HG1700. 

 
Based on the paper, number of recommendations can be 
made: 
 
1) The other system components besides position need to 

be verified. This will be done with a comparison with a 
more accurate inertial system 

2) Features under development, such as the offset 
estimation function need to be implemented on the real 
time platform. 

3) Almost all the testing to date has been done with the 
AG11 model of the HG1700. More qualification has to 
be done with the AG17 model. 
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