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ABSTRACT 
 
A key requirement of autonomous vehicle applications is a reliable, accurate, and robust positioning (aka localization) 
solution. Key navigation, planning and decision operations cannot happen without dependable positioning. This means that 
accurate positioning must be ubiquitous - in other words, reliably available at all times and in all places the vehicle is expected 
to operate. While Global Navigation Satellite Systems (GNSS) commonly provide the basis for absolute positioning, it always 
suffers from the inherent problem of availability whenever a direct view of enough satellites is not possible.  
 
To address the failure mode, additional complementary sensors can be added to the overall navigation solution through a 
technique known as sensor fusion. Sensors such as inertial measurement units (IMUs), cameras, LiDARs, RADAR, etc. can be 
selected in such a way that the individual shortcomings of each sensor are mitigated, and the overall robustness and reliability 
are improved. Although current autonomous vehicle applications employ sensor fusion techniques, they tend to rely on high-
performance sensors to meet the accuracy requirements. These high-performance sensors tend to induce a much higher cost 
burden than would be acceptable for commercial production, and therefore make mass autonomy too expensive. 
 
This paper will focus on the exploitation of the lower cost sensors already available on most modern vehicles. These sensors 
include low resolution odometry (DMI) and consumer grade IMUs currently used for dynamic stability control and wheel slip 
detection. A novel approach for combining vehicle speed, steering angles, transmission settings and multiple odometry inputs 
will be presented along with achievable results while operating under a GNSS denied environment. The test trajectory will 
mimic a typical parking structure with many corners and short straight segments. The only apriori information required for 
the filter is the wheel track and wheelbase (separation of wheels). 



 
A 90% performance improvement compared to the stand-alone GNSS/INS solution was observed during GNSS outages up to 
30 minutes. Furthermore, up to a 50% improvement was observed when comparing between the multi-odometry vs single 
odometry outages during the same 30-minute outage condition. Beyond GNSS outage performance, it will be shown how the 
use of the extra input to the filter can improve protection levels of the positioning system to allow for more frequent 
engagement of the autonomous navigation system. 
 
INTRODUCTION 
 
Any autonomous machine must be safe to operate, meaning it cannot cause any harm to any people and property. The 
stringency of this requirement does vary somewhat by environment; a packed public street is more difficult to operate safely 
in than a closed mine site. Whatever the operational environment, extremely reliable solutions are required. 
 
The positioning/localization system is one of many possible components of the overall autonomous system, each of which is 
expected to meet strict safety requirements. Conversely, to ensure the adoption of such a system in the consumer market it 
must also cost less than a manual system capable of the performing the same task. Although the overall cost will include 
ancillary costs such as maintenance and accident rates, the initial investment must not be prohibitive as is true across most 
commercial industries.  
 
Recent autonomous development has focused primarily on proving out the technology. This process has been underway for 
the past several years with all the successes, and failures, being well documented in the media. The technology is maturing 
rapidly with a growing adoption rate, however during the initial phase most of the vehicles have been equipped with high-
performance sensors that are simply too expensive for commercial products. The conflict between cost versus accuracy and 
reliability is driving innovation across the industry to maintain the solution expectations while driving hardware costs down. 
This paper will primarily focus on the positioning/localization aspect of the problem, by showing how to provide a reliable 
and robust solution while minimizing the cost of the input sensors. 
 
An obvious way to tackle the cost of the system is to fully utilize existing vehicle sensors. On most modern automobiles 
produced within the last decade, there are numerous sensors available that have been added for alternate advanced features. 
Sensors used for stability control, adaptive all-wheel drive, anti-lock brakes, etc. have become available on a wide variety of 
vehicles during this period. Although the sensors were not intended for positioning purposes, the information they provide 
can be very useful for such applications. To evaluate the effectiveness of these additional sensors, performance analysis will 
be provided while operating in a GNSS denied environment using combinations of consumer grade GNSS/INS systems and 
additional vehicle inputs provided via the vehicle CAN bus. 
 
SENSOR FUSION IN POSITIONING 
 
There are numerous methods for designing a system that can handle a multitude of sensors, each providing their own list of 
benefits. Due to the inherent, self-contained, aspect of inertial measurement units (IMUs), the filter design used for this 
discussion focused on the IMU as the nucleus of the sensor fusion positioning system. Although IMUs are independent of the 
environment within which they operate, they are susceptible to exponential error growth due to the nature of the 
observations. The errors can be controlled in several ways. The first method involves using higher performance IMUs with 
much lower error source, however this solution would greatly increase the overall cost of the system. A second method for 
controlling the errors is by applying complementary update sources, such as GNSS and/or vehicle data information. Once the 
errors are controlled, a continuous accurate solution for all possible environments will be available from the positioning 
system. 
 
The dramatic improvement of consumer grade micro-electromechanical sensors (MEMS) over the last several years has 
greatly improved the ratio of cost to accuracy for IMUs. In addition, multi-frequency low-cost commercial GNSS receivers are 
also more readily available to be paired with MEMS IMUs. These commercial GNSS receivers are typically designed to track 
weaker satellite signals, allowing them to track more observations in historically poor GNSS environments. The pairing of 
consumer GNSS with MEMS inertial sensors can provide an accurate solution in most conditions for a relatively low-cost 
point. However, MEMs IMU sensors still have limitations with regards to the overall performance they can achieve during 



update outages. To overcome this limitation, additional information is required. The information can come from historically 
expensive visual sensors, such as cameras and LiDAR, which also require significant computing power to be used effectively. 
Or, as discussed earlier, vehicle data information can be utilized to significantly constrain error growth and provide robust 
outlier detection. 
 
Modern vehicles already possess a wealth of additional sensor information from other subsystems such as Antilock Braking 
Systems (ABS) and Dynamic Stability Control (DSC). These sensors can be harnessed to improve the GNSS/INS solution at no 
additional cost and minimal computing power. With access to the high-speed data bus of a vehicle, multiple odometers, 
steering wheel angles, transmission settings, vehicle speed sensors and more can be accessed. These redundant 
measurements can be used to significantly constrain inertial error growth and in outlier detection. This is particularly helpful 
in traditionally difficult GNSS conditions such as parking structures, tunnels, urban canyons, orchards, etc.  
 
 
FUNCTIONALLY SAFE OPERATION 
 
In addition to providing additional accuracy, fusing the vehicle sensor data into the INS positioning algorithm also allows for 
a reduction in protection levels (PLs). PLs are a metric used in safety critical applications designed to represent the maximum 
possible error that may be present in the system, up to a high degree of confidence [1]. A PL has a corresponding integrity 
risk, which represents the maximum allowable failure rate, and is typically represented in failures per hour. A typical integrity 
risk of 10-7 per hour is used in this paper, meaning the error will only exceed the protection level once in 107 hours of 
operation. Protection levels are typically compared to an alert limit (AL) to decide whether the position solution is currently 
safe to use in autonomous applications. An AL would be set by an integrator and represents the largest error that can be 
present in the positioning output for it to still be a useful input for autonomous decision making. In autonomous driving, for 
instance, alert limits of 2-5 metres are common, representing lane-level, or road-level positioning confidence. 
 
Using tactical grade IMUs allows near seamless PL bridging through short GNSS outages [2]. However, using low-cost 
hardware to meet the needs of mass-market deployment, PLs tend to grow very fast during GNSS outages. This is because 
the PL needs to represent the worst-case error growth during periods of inertial navigation, due to estimation errors at the 
start of the outage plus random noise and sensor error drifts during the outage. In addition to constraining error, adding 
vehicle information provides a redundant input into the positioning algorithm, which helps to reduce the PL growth. 
 
The final test of the paper will use automotive grade GNSS and INS sensors to illustrate the PL behaviour in a typical 
automotive environment, and how this behaviour is affected by the addition of vehicle sensor information. 
 
VEHICLE DATA INTEGRATION 
 
Mandatory Dynamic Stability Control (DSC) aka Electronic Stability Control (ESC) came into effect in the United States in 2012  
[3] and Europe in 2014 [4]. Vehicles produced after this time all include a similar set of sensors to enable this functionality. 
These sensors are used for stability and slip detection as well as other monitoring and control functions (emergency braking, 
for example). They include relatively high-fidelity odometers on each wheel, multiple vehicle speed sensors, steering wheel 
angle sensors, transmission settings and potentially more.  
 
Although the primary purpose of these sensors is to provide stability control functionality, many of them can provide valuable 
information for positioning. A major difficulty to overcome is accessing the data from the individual sensors externally. They 
were not designed for external use and the data typically resides on the closed internal high-speed data bus of the vehicle. 
One method of access to the information lies with the on-board diagnostic (OBD) interface. The underlying problem with the 
OBD is it was designed for diagnostics and the data access is at a much lower output rate and priority. The ideal solution is to 
establish a direct connection to the vehicle’s high-speed internal data bus. 
 
All testing was done using a Lexus RX450h outfitted with a Hexagon | AutonomousStuff PACMod (Platform Actuation and 
Control Module) drive-by-wire system. The PACMod system provides a method for easy access to the vehicle’s internal high-
speed data bus over a CAN interface, or through a ROS driver. Figure 1 shows the vehicle used for all data collection and 
testing. 



 

 
Figure 1 – Hexagon | AutonomouStuff Equipped Lexus RX450h Test Vehicle 

 
Vehicle data sensors and internal high-speed data bus provide an attractive solution to adding more information to the 
positioning filter while maintaining a solution that is as cost-effective as possible. It must be understood that the available 
sensors were selected to complete their DSC related tasks and are therefore not intended specifically for navigation purposes. 
Vehicle dynamics and ground conditions (i.e. wheel slip) can directly affect the stability of the observations. Therefore, fusing 
the individual sources into reliable INS updates requires significant work to ensure erroneous measurements do not corrupt 
the final solution. Often these techniques can result in limitations with regards to the amount of weight, or trust, each sensor 
is given during updates. So, although these sensors provide extremely useful information, they cannot provide centimeter 
level positioning on their own. Rather they provide a mitigation in INS error growth and some form of redundancy to the 
overall solution for improved protection levels and greater solution consistency. 
 
An informative break down of the primary aiding sensors available from the vehicle data will be provided in the following 
sub-sections.  
 
Differential Odometry 
 
A sensor used for measuring distance is generally referred to as a distance measurement instrument or DMI. Odometry is a 
form of DMI and on most vehicles is done by mounting odometers on one or more wheels of the vehicle to measure the 
amount of wheel rotation. The measured distance from the DMI is used by the inertial filter as either a position or velocity 
update. 
 
The advantage of having simultaneous odometry for all the wheels is it allows for a process known as differential odometry. 
From the multiple sensor readings, redundancy and measurement quality can be greatly improved. Furthermore, new 
information is inherently provided, such as relative yaw rate measurements by differencing wheel rotation rates [5]. Although 
differential odometry is not a new concept, using it effectively is challenging. It requires apriori knowledge of the platform on 
which it is operating. For example, the test vehicle used in this case was a road vehicle employing front wheel Ackermann 
steering [6], illustrated in Figure 2. However, vehicles using other steering methods, such as skid-steer or articulated, will 
exhibit different wheel behaviour resulting in alternative modelling requirements. 
 
Historically, odometry measurements were limited to a single wheel, providing one distance measurement per sample, but 
with the DSC systems on modern cars, there are odometers on all wheels. This allows for the simultaneous use of data from 
all the wheels, a process called differential odometry. This allows for better distance measurements via redundancy and 
additionally provides relative yaw measurements by differencing wheel rotation rates [5].  



Figure 2 represents a typical Ackermann steered vehicle with an arbitrarily IMU placement. This is to illustrate all the 
necessary offsets and dimensions to be considered during initial setup of the system. Each wheel will experience a different 
velocity during a turn. To further complicate conditions, the IMU centre of navigation will be experiencing a different velocity 
to that of all the wheel velocities. Additionally, the angles of the two front wheels will be different during a turn. These 
differences must be accounted for to use multiple odometers properly. 
 

 
Figure 2 - Wheel Odometers and IMU, Ackermann Steering Vehicle 

 
Where: 

𝑇 Vehicle wheel track (width of vehicle defined by centre of left/right tires) 
L Vehicle wheelbase (length of the vehicle defined by centre of front/rear tires) 
𝑅 Radius of Turn 
𝐼𝐶𝑅 Instantaneous Centre of Rotation 

𝑣𝑟𝑅
𝑣 , 𝑣𝑟𝐿

𝑣 , 𝑣𝑓𝑅
𝑣 , 𝑣𝑓𝐿

𝑣  
Vehicle frame velocity of each wheel; 
rear right, rear left, front right and front left, respectively 

𝑣𝑟
𝑣 , 𝑣𝑓

𝑣  Vehicle frame velocity of virtual centre wheels; rear and front, respectively 

𝑣𝑏 IMU body frame velocity 
𝑣𝑣 Vehicle frame velocity of the vehicle centre 

𝛼𝑓
𝑣 

Effective steering angle of the vehicle, defined by virtual front centre tire, relates to the 
instantaneous centre of rotation 

𝛼𝑓𝑅
𝑣 , 𝛼𝑓𝐿

𝑣  
Actual steering angle (Ackermann) of right and left front wheels, respectively. The wheel on the 
inside of the turn will have a larger angle than the outside wheel. 

 
Additional error states must be added to the position filter when dealing with DMI update sources. For example, each wheel 
could have slightly different measurement scales due to sensor biases and environmental conditions. These differences could 
cause an apparent scale factor on each of the DMI measurements as the circumference changes. 
 



In order to minimize the number of additional states in the filter and to reduce the angular complexity of the Ackermann 
steering angles on the front wheels, the distance measurements are made with respect to a virtual centre wheel and all 
rotations are computed about those points. This is known as the bicycle model. This allows for a reduced number of additional 
filter states while preserving two unique sets of measurements into the system. Using all four wheels independently provides 
more unique measurements but requires more estimation states and complexity in order to handle the additional 
translations. The most effective method may vary depending on the vehicle and environmental conditions, but in road testing, 
the virtual centre wheel method produced excellent results. 
 
Transmission 
 
Vehicle transmission settings are useful to resolve the ambiguity in initial vehicle direction. This is particularly important for 
initialization of the INS system, depending on the overall system configuration.  
 
INS systems require an initial position and attitude to begin navigating. The initial azimuth can come from a variety of sources. 
Tactical grade IMUs can measure Earth’s rotation to compute an initial azimuth in a process called static gyro-compassing. 
However, the grade of sensors used for commercially viable autonomous vehicles cannot effectively measure earth’s rotation. 
This leaves three options for providing the initial azimuth to the INS system. First is that the initial azimuth is provided 
externally, possibly from memory or from another system. Second is from a dual-antenna GNSS system where the azimuth 
between the two antennas is computed by GNSS and relayed to the INS. And third is a kinematic alignment where the vehicle’s 
course over ground is used as the initial azimuth source.  
 
All three methods are likely to be used to varying degrees depending on the vehicle size, cost, dynamics etc. However, the 
only truly independent method is a kinematic alignment method. In this method the initial vehicle direction (forward or 
reverse) is an unknown. Without any knowledge of the vehicle, this is an ambiguity to an initializing INS system as the IMU 
cannot know which way is forward on the vehicle. 
 
The SPAN system will attempt to determine the direction by monitoring the raw accelerometer output to determine if the 
vehicle is accelerating forwards or backwards [7]. This method is reliable but adds time to system initialization as the azimuth 
direction is verified. 
 
Adding in vehicle transmission information immediately removes this ambiguity. This allows for faster INS system 
initialization, which in turn reduces the time from ignition to autonomy system engagement. 
 
Vehicle Speed 
 
Vehicle speed measurements may be provided by sensors in addition to the odometers. These can come from a variety of 
internal places such as driveshaft or differential, or it can come from external sensors such as ground RADAR in some cases. 
In either case, these provide primarily redundancy to the odometer speeds to help detect wheel slippage or any other 
erroneous measurements.  
 
Steering Angle / Curvature 
 
The steering angle of a vehicle coupled with a speed measurement can provide a relative yaw measurement. This is also 
provided by using differential odometry, but like vehicle velocity, these additional sensors provide a redundant measurement 
for error checking.  
 
The sensors providing steering angle and the method of reporting the angles can vary greatly. Most common is the steering 
wheel angle, though in some cases the actual wheel angles can be provided. In skid steer or articulated vehicles this becomes 
more complicated to translate into the turning rate. It is so variable in fact that some standardization bodies have attempted 
to define specific methods for communicating vehicle turn. For example, the ISO11783 (aka ISOBUS) standard defines their 
steering message PGN9216 where steering is represented via inverse radius of turn [8]. 
 



Depending on the sensors used, the conditions, and the measurement method, the steering angle measurements can be 
noisy and difficult to use as a navigation aiding source. It is particularly useful for vehicles which move very little as this is the 
case where INS azimuth accuracy struggles.  
 
TEST EQUIPMENT 

 
The test section of this document covers three test scenarios. The test vehicle used for all tests was discussed above and 
shown in Figure 1. The customized Lexus RX450h allowed access to the high-speed internal data bus of the Lexus for testing. 
Regarding the dedicated positioning sensors (GNSS and IMU), two different configurations were used.  
 
For the first two test cases, a Hexagon | NovAtel PwrPak7D-E1 receiver was used. This houses a survey grade dual-antenna 
GNSS receiver as well as a commercial grade Epson G320N IMU and is a system commonly used in autonomous test vehicles. 
The final used automotive grade GNSS and IMU sensors. As the focus of the test is on GNSS denied areas, the IMU type is the 
primary contributor to error growth [9]. In all cases a truth system running another NovAtel PwrPak7D connected to a tactical 
grade Litef µIMU-IC IMU was used. The truth and PwrPak7-E1 were run in RTK mode while the automotive sensor set used 
TerraStar X PPP [10]. The equipment used can be seen mounted in the vehicle in Figure 3 below.  
 

 
Figure 3  – Test GNSS/INS Equipment in the Test Vehicle 

  



TEST RESULTS 
 
As discussed in the previous section, three test cases are presented, investigating the effects of pairing the INS solution with 
vehicle sensor data. The first two tests induce large 30-minute GNSS outages on a commercial GNSS/INS receiver under 
different trajectory types (mixed road and parking structure) to observe error growth. The third also takes place in mixed 
road conditions but imposes shorter outages on automotive grade sensors to illustrate the effect on both errors and 
protection levels. 
 
Test 1: Extended GNSS Outages, Road Conditions 
 
The first test scenario takes place in an open sky mixed driving environment. A loop containing highway and suburban driving, 
including some traffic lights (meaning some zero velocity updates), is driven repeatedly. The test unit is a Hexagon | NovAtel 
PwrPak7D-E1. It is subjected to a 30-minute GNSS outage, meaning the position is based entirely on IMU and vehicle sensors 
with full GNSS denial. The control unit provides the reference trajectory and correspondingly does not have GNSS removed, 
remaining in RTK. In this test, the GNSS outage was induced in post-mission processing to observe the effects with various 
levels of aiding provided to the INS solution. Results are presented at the 10 and 30-minute marks of GNSS outage.  
 
This test simulates a scenario where GNSS is entirely denied for an extended period in a city. Though outages are unlikely to 
persist for that long, it could happen due to damage to the GNSS antenna, GNSS jamming, or possibly just extreme sky 
occlusion from the lower deck of a bridge. The distances and speeds driven are quite large, with an approximate distance 
travelled of 37 Km through the outage.  
 
To appreciate the scale of errors shown below, it is helpful to understand the baseline performance of an INS filter not 
applying any constraints through an update outage. Land vehicle constraints [7] are otherwise applied in all remaining results 
presented herein. 
 
Figure 4 shows the errors which can accumulate over a 10-minute GNSS outage with such an unconstrained INS system using 
this IMU. The expected second order error growth of the position is easily observed as well as the huge improvements 
provided by applying land vehicle constraints.  

 



 
Figure 4 – 2D Position Error of Various INS Configurations 

 
Obviously, it is difficult to visually compare improvements at this scale, so the unconstrained error growth will not be shown 
for the remainder of the test scenarios. It was included here for context.  What will be shown is the INS using land vehicle 
constraints without aiding sensors, adding a single odometer and full vehicle sensor data. Figure 5 below shows the same 
data to Figure 4 with the unconstrained data removed.  
 
From this, it is clearly observable that the land vehicle constraints themselves provide an immense benefit over unconstrained 
INS error growth but are still subject to significant random error accumulation. From there, adding a single odometer and 
then all the vehicle sensor data continues to improve and stabilize the error growth.  
 
Using a single odometer provides a single distance measurement allows observation of accelerometer errors in the along-
track IMU axis (depending on IMU orientation), but not the remaining accelerometers or gyroscopes, so a reduction in error 
accumulation is observed, but the error growth begins to destabilize as azimuth error accumulates and skews the application 
of the updates to the across-track accelerometer.  
 
Using differential odometry and redundant sensors allows for both additional distance measurements and relative yaw 
observations. Doing this allows for more effective distance measurements and observations of the yaw gyro error. This leads 
to lower error growth and much greater stability throughout the outage. Figure 6 shows the azimuth error of the system 
during the outage and illustrates how the single odometer has virtually no impact on azimuth error while the full vehicle 
sensor data significantly constrains it.   

 
 



 
Figure 5 – 2D Position Error Over a 10 Minute GNSS Outage 

 

 
Figure 6 – Azimuth Error Over a 10 Minute GNSS Outage 

 



The numerical RMS and 95% errors of this 10-minute outage are shown in Table 1. The improvements apparent in the 

preceding plots are also clearly represented in the statistics, particularly for the 95% confidence numbers.  

 

Table 1 10 Minute Outage Error Statistics, Mixed Driving Test 

Solution 

RMS Error 95% Error 

2D Position 
(m) 

Height  
(m) 

Azimuth 
 (deg) 

2D Position  
(m) 

Height 
(m) 

Azimuth 
(deg) 

Unconstrained INS  2416.57 170.64 0.49 5752.08 385.14 1.50 

Land Profile – No DMI 125.36 21.59 0.46 237.08 38.01 1.39 

Single Odometer 19.57 2.86 0.44 34.09 5.22 1.33 

Vehicle Sensors 10.79 2.31 0.25 14.22 4.47 0.76 

 
Figure 7, Figure 8 and Table 2 show the same data over the full 30-minute outage. These show that the trends observed in 
the 10-minute outage continue and become even more apparent. The accumulating IMU errors are increasingly reduced as 
more vehicle sensor data is allowed to help. The azimuth error remains very well bounded throughout this excessive 
outage. 
 
Another interesting phenomenon can be observed in Table 2, showing that in all positioning modes the vertical error 
growth is much lower than horizontal. This is typically true of INS systems because the gravity measurement already 
provides some observables on the vertical accelerometer. Conversely, the addition of vehicle sensors has less impact on 
this error which also makes sense because they provide no additional measurement on this accelerometer. They do 
however provide additional attitude constraints, which indirectly reduces the vertical error growth to a smaller degree. 
Consequently, the plots presented within the paper focus on horizontal (aka 2D) position errors. 
 

 

 
Figure 7 – 2D Position Error Over a 30 Minute GNSS Outage, Mixed Driving Test 

 



 

 
Figure 8 – Azimuth Error Over a 30 Minute GNSS Outage, Mixed Driving Test 

 
Table 2 30 Minute Outage Error Statistics, Mixed Driving Test 

Solution 

RMS Error 95% Error 

2D Position 
(m) 

Height  
(m) 

Azimuth 
 (deg) 

2D Position  
(m) 

Height 
(m) 

Azimuth 
(deg) 

Land Profile – No DMI 156.33 23.76 1.09 218.01 24.69 3.26 

Single Odometer 32.54 4.40 0.81 57.52 12.21 2.43 

Vehicle Sensors 13.72 6.23 0.22 14.61 16.03 0.65 

 
Another popular way to represent performance of an INS system is as a measure of error over the distance travelled. This is 
typically represented as a percentage, where the lower the number, the better. This can be a somewhat misleading statistic 
for INS systems as error typically grows over time rather than distance, meaning the statistic is heavily influenced by the 
speed driven for the test. However, it is useful here since the same data was used over the same distance outage so 
comparisons of overall error growth on the different positioning methods can be compared. These statistics are shown in 
Table 3, and again the use of vehicle sensor information is a large improvement at all measurement times.  

 
Table 3 Maximum Error / Distance Travelled, Mixed Driving Test 

Solution 

Maximum 3D Error / Distance Travelled (%) 
Over Outage Duration (min) 

1 Min 5 Min 10 Min 30 Min 

Unconstrained INS  3.32 6.43 7.12 5.95 

Land Profile – No DMI 3.23 5.00 2.71 0.56 

Single Odometer 1.00 0.40 0.35 0.29 

Vehicle Sensors 0.72 0.42 0.15 0.05 

 



Finally, to look at these results in a map view, this can be seen in Figure 9 below. This provides a clearer idea of what these 

errors translate to in real world environments. Figure 10 zooms in on the southwest corner which is an off-ramp turn. The 

control on this section was always in the same lane but even after a full 30-minute outage the INS + vehicle sensor data is 

still on the roadway.  

 

 
Figure 9 – Map View of 30-Minute GNSS Outage Performance, Mixed Driving Test [11] 

 



 
Figure 10 – Map View of 30-Minute GNSS Outage Performance, Mixed Driving Test, Zoomed [11] 

 

 

Test 2: Extended GNSS Outages – Parking Lot Test 

 

The second test scenario also takes place in an open sky environment but operates at much lower speeds to simulate driving 
within a parking structure. To ensure the most repeatable loop possible, the test vehicle was configured to use the drive-by-
wire system to drive a pre-recorded loop autonomously. This scenario was made possible through access to a safe closed test 
site provided by the City of Calgary Living Labs program.  
 
This test did not allow the car to stop at any point, which means that no zero velocity updates are available to the INS system, 
which makes this test case even more challenging for inertial navigation. This test is intended to show the effects of an 
extended GNSS outage on an auto-steer system exiting a parking structure. Autonomous systems have difficulty handling 
unstable position input as they will attempt to follow a very erratic path. The stability observed in the test above using vehicle 
sensors is therefore advantageous for this scenario.  
 
As with the first test, the test unit is the same Hexagon | NovAtel PwrPak7-E1. Again, it is subjected to a 30-minute GNSS 
outage with the control unit providing the RTK reference trajectory. Unlike the first test though, the GNSS outage was 
imposed in real-time by unplugging the antenna of the test unit. The unaided INS and single odometer scenarios were post-
processed from the recorded data, but the primary results were obtained in real-time. The auto-steering system did not have 
difficulty following the position trajectory thanks to its stability throughout the outage.  
 
The 10-minute error statistics for this test are shown in Figure 11, Figure 12 and Table 4 below. The results echo the results 
seen in the previous test with increasing stability as more sensors are fused into the solution. In this test the 95% 2D position 
error remains within 1.5 metres, or within a lane for a full 10-minute outage.  

 



 
Figure 11 – 2D Position Error Over a 10 Minute GNSS Outage, Parking Lot Test 

 

 
Figure 12 – Azimuth Error Over a 10 Minute GNSS Outage, Parking Lot Test 

 



Table 4 10 Minute Outage Error Statistics, Parking Lot Test 

Solution 

RMS Error 95% Error 

2D Position 
(m) 

Height  
(m) 

Azimuth 
 (deg) 

2D Position  
(m) 

Height 
(m) 

Azimuth 
(deg) 

Unconstrained INS  648.08 32.06 0.13 1511.95 72.92 0.39 

Land Profile – No DMI 27.04 2.92 0.13 48.35 5.14 0.39 

Single Odometer 4.98 1.97 0.12 7.44 3.61 0.37 

Vehicle Sensors 1.17 2.10 0.15 1.43 3.77 0.46 

 

The full 30-minute error statistics are shown in Figure 13, Figure 14 and Table 5 below. The position accuracy remains strong 

throughout the full outage; however, a small but growing oscillation can be seen in the latter half of the outage. 

Correspondingly, the azimuth error begins to diverge specifically for the vehicle sensor data set. This is likely caused by errors 

in the relative yaw measurements from the vehicle sensors combined with the near constant turning of the parking test loops. 

These measurements begin to apply more weight to the INS solution as the outage continues and begin to bias the azimuth 

off. Despite this, the positioning error remains far better as multiple odometry provides better distance measurements will 

be better around those turns. Still, at the end of the 30-minutes, the 2D position error 95% is at only 5 metres, or 0.12% error 

/ distance travelled (even though the total distance travelled is much lower in this test at about 6.5Km). 

 

 
Figure 13 – 2D Position Error Over a 30 Minute GNSS Outage, Parking Lot Test 

 



 
Figure 14 – Azimuth Error Over a 30 Minute GNSS Outage, Parking Lot Test 

 

Table 5 30 Minute Outage Error Statistics, Parking Lot Test 

Solution 
RMS Error 95% Error 

2D Position 
(m) 

Height  
(m) 

Azimuth 
 (deg) 

2D Position  
(m) 

Height 
(m) 

Azimuth 
(deg) 

Land Profile – No DMI 30.19 11.10 0.14 46.05 18.46 0.43 

Single Odometer 15.58 7.50 0.20 23.26 12.22 0.61 

Vehicle Sensors 3.46 6.57 0.86 5.17 10.11 2.57 

 
As with the first test, this can be looked at in a map view to get a context of the error growth over the full 30-minutes. This 
time because the vehicle was following the INS trajectory in real-time, the control line looks worse but represents where the 
vehicle actually drove while the real-time INS + vehicle sensor data shows what the INS solution was reporting, which was 
always following the original path. This test in the closed site is shown below in Figure 15. 
 



 
Figure 15 – Map View of 30-Minute GNSS Outage Performance, Parking Lot Test [11] 

 
Test 3: Short Outages and Highway Test Using Automotive Grade Sensors 

 

In the final test scenario, the NovAtel hardware is replaced by a low-cost, mass-market targeted sensor suite, representative 

of sensors that will be available for self-driving applications on autonomous passenger vehicles. RTK positioning is also 

replaced by Hexagon’s fast-converging PPP service, TerraStar X, as PPP is the likely method for mass market deployment, due 

to its superior scalability among other factors. 

 

GNSS and its supporting sensors provide the only source of absolute positioning for autonomous vehicles, making them a key 

component in a self-driving solution. Though vision sensors perform well in busy, urban environments, where GNSS struggles, 

they can struggle in open environments with fewer objects, or in adverse weather conditions, neither of which affect GNSS 

performance. For this reason, GNSS is particularly useful in highway environments. However, as shown previously [1,2], GNSS 

on its own cannot provide continuous PLs in the presence of highway overpasses or other partial or full obstructions. Again, 

IMUs are used to bridge these gaps. However, low-cost IMU errors grow too quickly for useable PLs in more challenging 

highway environments. This test will show that the addition of vehicle sensors can help to mitigate this problem. 

 

Before studying the performance of the system on the highway, shorter GNSS outages will be examined by simulating several 

hundred 30 second outages. Figure 16 below shows the impact vehicle sensors have on the error profile. For very short GNSS 

outages, up to about 15 seconds, the IMU errors continue to dominate the performance. Starting at about 15 seconds, the 

vehicle sensors begin to significantly reduce error growth. The time of this transition will vary based on the quality of the 

IMU, the vehicle sensors and the conditions entering the outage. For the sensors used in this study, the highway environment 

errors are unlikely to be significantly affected, as the GNSS outages under bridges are typically on the order of 1-5 seconds. 



 
Figure 16 – Automotive Sensors Error over 30-Second GNSS Outages 

 

Figure 17 shows the corresponding PL performance during the same GNSS outages. Unlike errors, the vehicle sensors have a 

significant and immediate effect on the PL. The contrast between the true error performance and the PL performance does 

make sense. In the case of the error profile, the performance is driven by the IMU at first, but as the IMU error states become 

less certain, the vehicle information begins to have a larger impact. This is because the vehicle sensor related error states 

tend to change more slowly. Conversely, in the case of PL growth, having a redundant source of information in the vehicle 

sensor data helps to constrain the maximum possible error that can be present in the system right away. Mathematically, the 

vehicle sensor inputs tend to agree well with the IMU observations at first, so the state is relatively unaffected, but since they 

provide a second source of observations, the covariance of the overall system is reduced, impacting the PL. 



 
Figure 17 – Automotive Sensors Protection Level over 15-Second GNSS Outages 

 

Table 6 below summarizes the data shown in Figure 16 and Figure 17. At 10 and 30-second GNSS outages the differences (or 

lack thereof) between errors and protection levels can be clearly seen.  

 

Table 6 Automotive Sensors Error and Protection Level Statistics – 10 & 30 Second Outages 

Solution 
Outage 

Duration 
(s) 

Error Protection Level 

2D Position 
RMS (m) 

2D Position 
95% (m) 

2D Position 
RMS (m) 

2D Position 
95% (m) 

IMU Only 
10 

0.15 0.46 4.62 5.43 

Vehicle Sensors 0.15 0.43 2.96 3.56 

IMU Only 
30 

1.57 3.42 23.89 28.68 

Vehicle Sensors 1.05 2.59 18.32 21.81 

 
Moving on from simulated outages to real conditions, highway data were collected on two major inter-city highways, which 

include overpasses at regular intervals, instances of multiple consecutive overpasses and some short underpass highway 

sections. Figure 18 shows the error and PL performance through the test; the left plot is the full dataset, and right is a zoomed 

in section to better show the behaviour as sky obstructions (overpasses) are encountered.  

 



 
Figure 18 – Automotive Sensors Protection Level – Highway Driving 

 

As expected from the short outage study above, the error profile is nearly identical, regardless of whether vehicle information 

is used or not. However, the contrast between the PL performance is significant. When using vehicle sensor data, protection 

levels remain lower overall, grow more slowly and recover faster. The redundant measurements provided allow for all three 

of these by providing additional information, which keeps the maximum possible error lower.  

 

The faster recovery also compounds when encountering consecutive outages. In this case the PL recovers to a lower value 

between outages and therefore remains much more stable. This is highlighted in the zoomed-in portion of Figure 18. RMS 

and 95th percentile stats for the highway test are shown in Table 7. 

 

Table 7 Automotive Sensors Error and Protection Level Statistics - Highway 

Solution 
Error Protection Level 

2D Position 
RMS (m) 

2D Position 
95% (m) 

2D Position 
RMS (m) 

2D Position 
95% (m) 

IMU Only 0.31 0.59 2.22 3.81 

Vehicle Sensors 0.31 0.59 1.62 2.33 

 
Since protection levels are only useful in autonomous applications when they are below the system defined alert limit, Table 

8 summarizes the system availability, which is the percent of time that the system is below the corresponding alert limit. For 

challenging highway environments like the one studied here, vehicle information becomes more important for applications 

that require smaller alert limits. 

 

Table 8 Automotive Sensors Availability at different Alert Levels - Highway 

Solution 

Availability (%) 

2m  
Alert Level 

3m  
Alert Level 

5m 
Alert Level 

IMU Only 69.2 88.6 98.3 

Vehicle Sensors 90.8 98.1 99.8 

 
A Stanford Plot [12] of the data assuming an alert limit of 3 m is shown below in 

Figure 19 both without (left) and with (right) vehicle sensor input. For both setup all points are in the upper left diagonal, 

supporting the algorithm validity. The different zones as labelled in the diagram are: 

 



• Normal operation: The error is below the PL, and the PL is below the AL (available and safe) 

• System unavailable: The error is below the PL, and the PL is above the AL (unavailable but safe) 

• Misleading information (MI): The error is greater than the PL, and the error and PL are both below the AL (available 

and misleading, but not a safety risk because the error is less than the AL), or the error and PL are both above the 

AL (unavailable and misleading, but not a safety risk because the PL is greater than the AL) 

• Hazardously misleading information (HMI): The error is greater than the AL and the PL is below the AL (unsafe) 

 

 
Figure 19 – Stanford Plot for 3m Safe Operation, (a) without and (b) with aiding vehicle sensor data 

 

Importantly, no misleading positions are reported in either case, but the availability is significantly increased using the vehicle 

sensor data. This shows that adding vehicle sensor information has a significant impact on how often a functionally safe 

position can be made available in a typical autonomy application. 

 

CONCLUSION 

The results presented in this paper clearly show that there are compelling advantages to pairing existing vehicle sensors with 
an INS centric positioning system to boost positioning accuracy and availability. The accuracy benefits become more prevalent 
the longer that GNSS is unavailable, but protection levels are impacted over brief outages such as highway overpasses.  
 
This is a very attractive proposition for autonomy applications as the sensors and data bus are already there in passenger 
vehicles. Modern vehicles in other industries, such as agriculture and mining, also possess many of these sensors and can 
benefit from this technique. Additionally, the computations necessary to add the sensors into an existing INS system are 
minimal and can also very likely be handled by processors already present on the existing system. This significantly improves 
system performance without any additional hardware cost. 
 
Inertial navigation alone, even aided with vehicle sensor data, is not enough to maintain lane-level accuracy indefinitely, but 
it does significantly improve the accuracy, stability and safety throughout GNSS denied conditions, even for extended periods. 
This contributes to a more available safe solution for autonomy and a stronger core for further sensor fusion. Adding in 
additional data from visual sensors is also made easier with a more accurate and stable base. Either with map-matching or 
other visual sensor odometry, getting a solution agreement is more likely and more likely correct.  
 
While a full autonomy stack will undoubtedly make use of a full sensor suite and high-definition maps, these test results show 
that existing sensors on vehicles can be harnessed to greatly improve performance without incurring any additional cost and 
with minimal knowledge of the vehicle platform.  
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