IMU-IGM-A1

Small, lightweight MEMS IMU enclosure for pairing with SPAN technology from Hexagon | NovAtel

World-leading GNSS+INS technology

SPAN GNSS+INS technology brings together two different but complementary technologies: Global Navigation Satellite System (GNSS) positioning and inertial navigation. The absolute accuracy of GNSS positioning and the stability of Inertial Measurement Unit (IMU) gyro and accelerometer measurements are deeply coupled to provide an exceptional 3D navigation solution that is stable and continuously available, even through periods when satellite signals are blocked.

SPAN enabled MEMS enclosure

The IMU-IGM-A1 is designed to pair with a SPAN enabled GNSS receiver. Incorporating a MEMS inertial sensor, the IMU-IGM-A1 delivers the smallest and lightest IMU enclosure in our IMU enclosure portfolio.

The IMU-IGM-A1 delivers a rugged product designed for your GNSS+INS solution.

Improved accuracy

Receivers from NovAtel provide your choice of accuracy and performance, from decimetre to RTK-level positioning. For more demanding applications, Waypoint Inertial Explorer software can be used to post-process real-time data to provide the highest level of accuracy.

Benefits

- Economical
- Easy integration with NovAtel’s SPAN capable GNSS+INS receivers
- Commercially exportable
- Rugged design ideal for challenging environments

Features

- Low noise commercial grade gyros and accelerometers
- Dedicated wheel sensor input
- IMU data rate: 200 Hz
- Direct UART interface to OEM7 receivers
- SPAN GNSS+INS capability with configurable application profiles
SPAN System Performance

Horizontal Position Accuracy (RMS)
- Single point L1/L2: 1.2 m
- SBAS: 60 cm
- DGPS: 40 cm
- TerraStar-L PRO: 40 cm
- TerraStar-C PRO: 2.5 cm
- TerraStar-X PRO: 2 cm
- RTK: 1 cm +1 ppm

Data Rates
- IMU Raw Data Rate: 200 Hz
- INS Solution: Up to 200 Hz

Time Accuracy
- 20 ns RMS

Max Velocity
- 515 m/s

Environmental

Temperature
- Operating: -40°C to +65°C
- Storage: -50°C to +80°C

Humidity
- MIL-STD-810G 95% Non-condensing

Vibration (operating)
- Random: MIL-STD-810G (7.7 g)
- Sinusoidal: IEC 60068-2-6 (5 g)
- Bump: IEC 60068-2-27 (25 g)
- Shock: MIL-STD-810G (40 g)

Immersion
- IEC 60529 IPX7

Compliance
- FCC, ISED, CE

Included Accessories
- Combined power and data cable

Optional Accessories
- I/O and wheel sensor accessory cable
- Inertial Explorer post-processing software

Physical and Electrical

Dimensions
- 152 × 137 × 51 mm

Weight
- 475 g

Power
- Input voltage: 10-30 VDC
- Power consumption: 2.5 W

Connectors
- Main port and AUX port DB-HD15

Communication Ports
- 1 RS-232/RS-422 IMU data port
- 1 Wheel sensor port

Status LEDs
- Power
- GNSS status
- INS status

IMU Performance

Gyroscope Performance
- Input range: ±450 deg/sec
- Rate bias stability: 6 deg/h
- Angular random walk: 0.30 deg/√hr

Accelerometer Performance
- Range: ±18 g
- Bias stability: 0.1 mg
- Velocity random walk: 0.029 m/s/√hr

IMU-IGM-A1 Product Sheet

Contact Hexagon | NovAtel
sales.novap@hexagon.com | 1-800-NOVATEL (U.S. and Canada) or 403-295-4900 | China: 0086-21-68882300 | Europe: 44-1993-848-736 | SE Asia and Australia: 61-400-883-601.

For the most recent details of this product: novatel.com

Inertial Explorer, NovAtel, OEM7, SPAN, TerraStar and Waypoint are trademarks of NovAtel, Inc., entities within the Hexagon Autonomy & Positioning division, their affiliated entities, and/or their licensors. All other trademarks are properties of their respective owners.

©2021 NovAtel Inc. All rights reserved. NovAtel makes no representation or warranty regarding the accuracy of the information in this publication. This document gives only a general description of the product(s) or service(s) offered by NovAtel, and, except where expressly provided otherwise, shall not form part of any contract. Such information, the products and conditions of supply are subject to change without notice.

D17520 Version 9 | 26 April 2021 | Printed in Canada