INTRODUCTION

The performance of the Model 600 can be summarized as follows:

- Very good sensitivity to right hand circularly polarized signals over a wide range of elevations and in all azimuth directions
- Excellent amplitude radiation pattern roll-off near the horizon, in effect eliminating multipath-generated replicas of the original line-of-sight (LOS) signal
- Very good axial ratio, thus ensuring that a high quality signal is received
- Common location and stable phase center for both L1 and L2 channels (The phase center in the x and y-axis is located in the center of the antenna for both channels due to its inherent symmetry and co-centric type design.)
- Enhanced immunity against electromagnetic interference
- Better radiation “hardening” from lightening or EMP (electromagnetic pulse) effects
- High-speed transient voltage suppressor
- Operational temperature range from cold to hot extremes

DESCRIPTION

The Model 600 GPSAntenna is an active antenna designed to operate at the GPS L1 and L2 frequencies, 1575.42 and 1227.60 MHz. The slot array antenna element is coupled to a low-noise amplifier (LNA). The unit is optimized to receive right-hand-circularly-polarized signals, and its radiation pattern is shaped to reduce signals arriving at low elevation angles; these features decrease the errors associated with electromagnetic interference and multipath.

The Model 600 GPSAntenna is intended for surveying and other kinematic positioning applications. The sealed radome allows the antenna to be used in severe weather, marine applications and hostile environments. The unit's compact size and light weight ensure its portability.

Both the input DC power and the output RF signal flow over a single coaxial cable connected to the unit's TNC female connector.

To mount the antenna, ensure that the adapter is screwed into the antenna base (finger tighten only). It is best to leave this adapter in at all times as it protects the plastic threads.
of the antenna itself. Screw the bottom of the adapter onto a range pole, tribrach, tripod or other equivalent mount. Attach coaxial cable from the antenna connector to the antenna port on your receiver.

Caution: Over tightening the metal adaptor into the plastic baseplate will damage the baseplate.

The maximum directivity at 90° elevation angle (antenna boresight) is typically 8 to 10 Decibels (dB). This is on average 5 dB more than a typical patch antenna. In addition the pattern roll-off from boresight to antenna horizon (0° elevation angle) is in the order of 15 to 20 dB. This roll-off compares well to a patch antenna roll-off mounted on a large choke ring ground plane. This antenna has a major advantage above the choke ring ground plane antenna – it is lighter by several pounds and much smaller.

There is no difference in phase center location between the L1 and L2 channels. This is a very important feature of the antenna. Base stations with very long GPS baselines normally use a choke ring type antenna that has a physical vertical offset (z-axis) between the L1 and L2 channels in the order of 20 mm. The vertical phase center offset then has to be corrected because the choke ring antenna sees a different GPS satellite constellation. The GPS 600 then is very suitable for long baseline applications such as tectonic plate movement monitoring or telescope alignment. The phase center in the x and y-axis is located in the center of the antenna for both channels due to its inherent symmetry and co-centric type design.

ELECTRICAL TECHNICAL SPECIFICATIONS

- **3 dB pass band:**
 - L1: 1575 ± 8 MHz
 - L2: 1228 ± 10 MHz

- **Out-of-band rejection:**
 - \(f_c \pm 30\,\text{MHz:}
 - 25 (typical)
 - \(f_c \pm 50\,\text{MHz:}
 - 30 (typical)
 - \(f_c \pm 100\,\text{MHz:}
 - 50 (typical)

- **Antenna elev. pattern:**
 - \(\theta = 90^\circ:
 - 7.5\,\text{dBiC (L1 min.)},\ 6.5\,\text{dBiC (L2 min.)}
 - 20^\circ \leq \theta < 90^\circ:
 - -1.5\,\text{dBiC (L1 min.)},\ -1.5\,\text{dBiC (L2 min.)}
 - 5^\circ \leq \theta < 20^\circ:
 - -5.5\,\text{dBiC (L1 min.)},\ -3.5\,\text{dBiC (L2 min.)}
 - 0^\circ \leq \theta < 5^\circ:
 - -7.0\,\text{dBiC (L1 min.)},\ -5.0\,\text{dBiC (L2 min.)}

- **LNA gain:**
 - L1: 27 dB (typical)
 - L2: 27 dB (typical)

- **Polarization:**
 - Right-hand circular

- **Noise figure:**
 - 2.5 dB (typical)

- **L1-L2 differential propagation delay:**
 - 1.5 nsec (typical)

- **Axial ratio:**
 - \(0^\circ \leq \theta \leq 90^\circ:
 - 5\,\text{dB max. (L1),}\ 3\,\text{dB max. (L2)}
 - (90^\circ =\text{zenith})

- **Nominal impedance:**
 - 50 Ω

- **VSWR:**
 - \(\leq 2.0:1\)

- **Power requirements:**
 - \(\leq 50\,\text{mA} @ +4.5\ to +18\,\text{VDC},\ 40\,\text{mA (typical)} @ 5\,\text{VDC}\)

MECHANICAL & ENVIRONMENTAL SPECIFICATIONS

- **Finish:**
 - Weatherable polymer

- **Weight:**
 - \(\approx 730\,\text{g (25.75 oz)}\)

- **Altitude:**
 - 3000 m (9842.5 ft)

- **Temperature:**
 - -55 °C to +85 °C (-67 °F to +185 °F)

MECHANICAL DRAWINGS

- All dimensions are in millimeters (mm)
 - where 1 inch = 25.4 mm
