
OEM6® Family
Application Programming

Interface (API)

USER GUIDE

OM-20000140 Rev 2 June 2014

Proprietary Notice
OEM6 Family Application Programming Interface (API) User Guide

Publication Number: OM-20000140
Revision Level: 2
Revision Date: June 2014
This manual reflects firmware version 6.400 / OEM060400RN0000

Proprietary Notice
The software described in this document is furnished under a licence agreement or non-disclosure
agreement. The software may be used or copied only in accordance with the terms of the agreement.
It is against the law to copy the software on any medium except as specifically allowed in the license
or non-disclosure agreement.

Information in this document is subject to change without notice and does not represent a
commitment on the part of NovAtel Inc. The information contained within this manual is believed to
be true and correct at the time of publication.

OEM6 and NovAtel are registered trademarks of NovAtel Inc.

FlexPak6 and ProPak6 are trademarks of NovAtel Inc.

All other brand names are trademarks of their respective holders.

© Copyright 2014 NovAtel Inc. All rights reserved.

Unpublished rights reserved under International copyright laws.
2 OEM6 Family Application Programming Interface (API) User Guide Rev 2

OEM6 Family Application Programming Interface (API) User Guide Rev 2 3

Table of Contents

1 Introduction..5
1.1 Overview.. 5
1.2 Features... 5
1.3 Materials Provided - API Development Kit... 5
1.4 Requirements to Build and Run an Application ...6

1.4.1 Firmware Compatibility ... 6

2 Designing and Building the Application ...7
2.1 Designing the Application .. 7

2.1.1 Working with the Virtual Ports .. 7
2.1.2 Using the GPIOs .. 7
2.1.3 Input Parameters.. 8
2.1.4 Auto-Start Applications... 8

2.2 Building the Application.. 9
2.2.1 Compile, Link and Integrate the Application... 9
2.2.2 Convert the Binary Executable to S-Records... 9
2.2.3 Adding Information for Loading the Application.. 9

3 Loading and Controlling the Application ..11
3.1 Setting up the Receiver.. 11

3.1.1 Determining the Current Model and Firmware Version .. 11
3.1.2 Updating the Firmware ... 11
3.1.3 Authorizing a Model with the API Option.. 12

3.2 Loading the Application.. 12
3.3 Controlling the Application ... 12

3.3.1 Starting the Application .. 12
Table 1 - APPLICATION START Parameters... 12

3.3.2 Stopping the Application... 13
3.3.3 Removing the Application... 13

4 Additional Information ..14
4.1 Determining the Version of the Loaded Application... 14
4.2 Logging the Application Status .. 14
4.3 DATABLK Parameters Used in Logs ... 16
Table 2 - DATABLK Parameters Used in Logs... 16

A Green Hills Software Compiler Tools..17
A.1 GHS Compiler 17
A.2 Obtaining and Installing GHS Compiler 17
A.3 Dynamic Download Object (DDO) 17

A.3.1 Building the Dynamic Download Object 17
A.3.2 Building the Project 18

A.4 Creating Loadable S-Records 21
A.4.1 S-Records 21

Table 3 - S-Record Fields ... 21
Table 4 - S-Record Types... 21

A.4.2 Adding Information for Loading the Application 22
Table 5 - DATABLK Parameters... 22

4 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Notices

ForewordScope
This document contains sufficient information on working with the Application Programming Interface
(API) to be able to develop applications for NovAtel’s OEM6 family of receivers. It does not provide
specific details of the functions offered by the API but rather information on building and loading
applications. Details of the API functions can be found in the API header file.

Conventions
The conventions used throughout this document are:

< > Text displayed between < and > indicates a variable parameter.

In tables where no values are given, such fields should be assumed to be reserved for future use.

Customer Service
If you have any questions or concerns regarding the OEM6 API, please contact NovAtel Customer
Service using any of the following methods:

NovAtel GPS Hotline: 1-800-NOVATEL (U.S. & Canada) (1-800-668-2835)
403-295-4900 (International)

Fax: 403-295-4901
E-mail: support@novatel.ca
Website: www.novatel.com
Write: NovAtel Inc. Customer Service Dept.

1120 - 68 Avenue NE
Calgary, Alberta, Canada
T2E 8S5

 Information to supplement or clarify

 Caution—an action, operation or configuration may result in incorrect or
improper use of the product

 Warning—an action, operation or configuration may result in regulatory
noncompliance, safety issues or equipment damage

mailto:support@novatel.ca
http://www.novatel.com

Chapter 1 Introduction

1.1 Overview

The Application Programming Interface (API) allows you to develop specialized C/C++ applications
to further extend the functionality of your OEM6 family receiver. By using the functions provided by
the API, along with the commands and logs already provided by the OEM6 firmware, a wide variety
of applications can be created.

1.2 Features

The OEM6 API provides the following features:

• The ability to open physical ports on the receiver to interface with external devices

• Support for three virtual ports, to directly send commands to and receive logs from the
receiver firmware

• Support for multiple tasks, with varying priority levels

• Message queuing functionality supporting inter-task communication

• Support for semaphores and mutexes

• The ability to control many of the receiver’s general purpose input/output (GPIO) lines

• Access to receiver time

• Controller Area Network (CAN) protocol functionality (for receivers that support it)

• Pulse-width modulation control (for receivers that support it)

• SoftLoad interface, which provides functionality for upgrading the receiver firmware

• Ability to store data in Non-Volatile Memory (NVM)

• Network Socket API based on BSD Sockets (available for receivers that support
Ethernet)

• File IO APIs for accessing data files within the internal flash memory device (available for
OEM638 receivers only)

Refer to the API header file for more information on the features provided by the API.

1.3 Materials Provided - API Development Kit

The API Development Kit supports building applications for the two different processors found on
NovAtel OEM6 family of receivers.

The build tree for OEM628 and OEM615 receivers is found in the top level folder "iMX31". The build
tree for the OEM638 receiver (also in the ProPak-6 enclosure) is found in the top level folder
"OMAP".

Be sure to use the appropriate build tree for the receiver type. Applications built for one type of
receiver processor will not run on the other type of receiver processor.

The following is provided in the OEM6 API Development Kit:

• Example code projects for the Green Hills Software (GHS) multi compiler environments

• NovAtel’s WinLoad utility for loading the application onto the receiver

• Each processor specific build tree contains the following:
5 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Introduction
- An OEM6 API library file (liboemapi.a)

- An OEM6 API header file (oemapi.h)

- A folder containing the directory structure and files needed to build a proper Green Hills
Software (GHS) executable

- Two Windows command line utility programs, TOSREC and DATABLK, which format the
executable for use with a NovAtel receiver

1.4 Requirements to Build and Run an Application

In addition to the items listed in the API Development Kit (see Section 1.3), the following is required
to build and run an application on an OEM6 family receiver:

• A NovAtel supported complier. Currently, only Green Hills Software (GHS) C/C++
compilers, are supported. The GHS Software C/C++ compiler is available in the GHS
Multi 6.1 Integrated Development Environment, for the ARM processor family (version
2012.1). For more information about obtaining GHS compiler tools from NovAtel, please
contact your NovAtel sales representative or email: sales@novatel.ca

• OEM6 family receiver running OEM060400RN0000 (6.400) firmware or higher, loaded
with an API enabled software model. (See Section 3.1 on Page 11 for more information
about setting up the receiver for loading an application.)

• A computer with a serial port and a serial cable to load the application onto the receiver.
Versions of the compiler are available for both Linux and Windows.

• In addition to this manual, the following manuals can be downloaded from out web site:
OEM6 Family Firmware Reference Manual (OM-20000129)
OEM6 Installation and Operation Manual (OM-20000128)

1.4.1 Firmware Compatibility
Applications built for previous versions of NovAtel OEM products, will not run without first being
recompiled with the new API. Although every effort was made to retain functional compatibility, it is
important to check the Release Notes for the list of changes to the API since the last release.

In particular, applications that were built using the Developer Kit for 6.2XX versions of the receiver
firmware will not run on receivers loaded with firmware revisions 6.300 or later. Attempting to start
such an application on the receiver will product the result: “ERROR: ELF format error".

A description of the changes made to the API since the last version can be found in the Release
Notes. To determine what version of the API your firmware supports, log the APPLICATIONSTATUS
message, which is described further in Section 4.2 on Page 14.

 Your applications require recompiling using Green Hills Software compiler
tools.
6 OEM6 Family Application Programming Interface (API) User Guide Rev 2

http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000128.pdf

Chapter 2 Designing and Building the Application

2.1 Designing the Application

When designing an application for an OEM6 family receiver, it is important to understand some of the
key features of the API as explained in the following sections.

2.1.1 Working with the Virtual Ports
When communicating through one of the physical or virtual ports, the application must be designed
to either:

• Read all data sent to the port or

• Configure the port to not transmit data and disable response generation

This is necessary because any incoming data remains in a buffer until it is read and is not
automatically discarded if more data arrives, resulting in a build up of waiting data.

To disable transmission and response generation at the port, use the INTERFACEMODE command
with the NONE mode for the txtype field and OFF for the responses field. Refer to the OEM6 Family
Firmware Reference Manual (OM-20000129) for more information on this command.

2.1.2 Using the GPIOs
Many of the OEM6 family receivers provide LV-TTL general-purpose input/output (GPIO) signals that
can be used by your application. The API header file provides more details on the functions available
to control and read these GPIOs. The sections below indicate which GPIOs are provided on each
receiver type.

2.1.2.1 OEM638™

There are two GPIO pins available on the OEM638:

• GPIO_ERROR

• GPIO_PV

2.1.2.2 OEM628™

There are four GPIO pins available on the OEM628:

• GPIO_USER0

• GPIO_USER1

• GPIO_ERROR

• GPIO_PV

To use GPIO_USER0, be sure to disable COM3, which shares the Tx line with USER0 on pin 19.

 Review the sample applications provided with the API for more information
on how to design your application to work with the receiver firmware.

 Refer to the OEM6 Installation and Operation Manual (OM-20000128) for the
GPIOs electrical specifications and pin locations.
7 OEM6 Family Application Programming Interface (API) User Guide Rev 2

http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000128.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf

Designing and Building the Application
Refer to the INTERFACEMODE command in the OEM6 Family Firmware Reference Manual (OM-
20000129) for more information.

2.1.2.3 OEM615™

The following pin is available on the OEM615:

• GPIO_PV

2.1.2.4 FlexPak6™

There are two GPIO pins available on the FlexPak6:

• GPIO_ERROR

• GPIO_PV

2.1.3 Input Parameters
There are two methods that can be used to pass parameters to an application.

2.1.3.1 Command Line Entry

The application can be designed to accept a single unsigned, 32-bit parameter, which is then entered
as part of the command string for starting the application. This parameter could be used, for
example, to set the output serial port used by the application.

For more information about entering a parameter when starting the application, see Section 3.3.1 on
Page 12.

See Section 2.1.4 for a note about the use of command line entry input parameters with auto-start
applications.

2.1.3.2 DATABLK Entry

Alternately, the <SNKey> field, set when the DATABLK utility is run on the executable, can be used to
store an input parameter, which would then be read from the VERSION log by the application.

For more information about the <SNKey> field, see Appendix A.4.2.1, Using DATABLK on page 22.
Section 4.3 on Page 16 provides more information about where the field is stored in the VERSION
log.

2.1.4 Auto-Start Applications
An application loaded onto an OEM6 family receiver can be set to automatically start whenever the
receiver is powered up. This option is set using the <ComponentEnum #> field of the DATABLK
utility, which is described in Appendix A.4.2.1, Using DATABLK on page 22. For convenience, the
macro START_OPTION in the customApp.gpj file is used to supply this field value.

 When an application is configured to automatically start, the input parameter
is fixed as 0, the priority is set to PRIORITY_LEVEL1 and the stack size is
10,000. See Section 3.3 on Page 12 for more information.
8 OEM6 Family Application Programming Interface (API) User Guide Rev 2

http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf

Designing and Building the Application
2.2 Building the Application

There are three basic steps required to build the application and convert it into a format that can be
loaded onto a receiver.

1. Compile, link and integrate the application into a binary .elf file

2. Convert the binary file into S-Records

3. Add additional S-records necessary for loading the application

The example build project framework that is supplied under each build tree (iMX31 and OMAP)
contains Green Hills build projects that perform all three of the above steps. The sections that follow
briefly describe the three steps, with more detailed information found in Appendix A.4, Creating
Loadable S-Records on page 21 and Appendix A.4.1, S-Records on page 21. It is important to
review these appendices to determine any special variations for your situation. In most cases the
required changes can be made via predefined "Macro" variables in the top level build project file
(customApp.gpj)

With the Green Hills compiler tools installed and your PATH set correctly (see Appendix A.2,
Obtaining and Installing GHS Compiler on page 17), invoke the following command from within the
processor-appropriate build tree:

gbuild -top customApp.gpj

A clean build will result in the file ddProject.hex which can then be loaded onto the receiver.

2.2.1 Compile, Link and Integrate the Application
Compiling and linking of the application follows the steps familiar to developers of C/C++
applications. The Green Hills build project download_as0.gpj contains the list of source files and
folders to search for include files and libraries to link against. Normally, one need only add or change
the list of source files. The example project provided uses a single source file: download_as0.cpp.

The next step performed by the Green Hills project files are to "Integrate" the executable into a form
that the operating system can work with on the receiver. The project file "download.gpj" performs this
step and the contents of this file must not be changed. Appendix A.3, Dynamic Download Object
(DDO) on page 17 contains more detailed information on dynamic downloads, the build folder
structure and the steps automatically invoked to create the final executable.

2.2.2 Convert the Binary Executable to S-Records
The Green Hills build project automatically invokes the supplied utility TOSREC to convert the
Dynamic Download Object into a format that can be loaded onto the receiver. For more detailed
information about this process see Appendix A.4, Creating Loadable S-Records on page 21.

There should never be any changes required to this process.

2.2.3 Adding Information for Loading the Application
The WinLoad utility is used to load the application .hex file onto the receiver and reads information
from the .hex file in order to determine how the application should be loaded. This information is
included in a special set of S-Records placed at the beginning of the .hex file loaded onto the
receiver.

The provided DATABLK utility is invoked by the Green Hills build project "download.gpj" to add these
special S-Records. It is very likely that some of the information included in these S-Records will need
to be customized for your particular application. For example, the name of the application, whether it
is to be started automatically and the serial number key for the application.
OEM6 Family Application Programming Interface (API) User Guide Rev 2 9

Designing and Building the Application
The file customApp.gpj contains a set of macro definitions for the values that are most likely to be
customized for your project. For most customers, this will be sufficient for their needs. However, for
more detailed information about the DATABLK utility and the options that can be provided to it, see
Appendix A.4.2, Adding Information for Loading the Application on page 22.
10 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Chapter 3 Loading and Controlling the Application

Once the application is built and converted to S-record format, with the necessary S-records added,
the application can be loaded onto the receiver.

A Windows based utility named WinLoad is used to assist with loading the firmware.

3.1 Setting up the Receiver

In order to load and run an application, the receiver must have:

• A model with the API option enabled

• Version OEM060400RN000 (6.400) or higher of firmware loaded

The following sections provide information on how to determine if your receiver meets these criteria
and how to update it if it does not.

3.1.1 Determining the Current Model and Firmware Version
To determine the current model and firmware version of the receiver, read the VERSION log. To do
so, send the following command to the receiver:

LOG VERSION

Read the output provided, specifically the 1st and 4th fields after the word GPSCARD. The first field
provides the model and the fourth field indicates the version of firmware loaded on the receiver.

Example:

In this example, the last character in the model field ends with an “A” and the firmware version field
reads “OEM060400RN0000”, therefore an application can be loaded and executed on the receiver.
If an update to the firmware and/or model is needed, instructions are provided in Section 3.1.2 and
Section 3.1.3 of this document.

3.1.2 Updating the Firmware
To update the firmware to a version that supports the API, obtain the following from NovAtel
Customer Service:

• The firmware update file, with version OEM060400RN000 (6.400) or higher

• An update authorization code

WinLoad is also required to load the firmware onto the receiver and is included with the API package.
Follow the procedure in the HowTo.txt file provided with the update file to upgrade the firmware.

GPSCARD "D2LR0RTTRA" "BFN11230026" "OEM628-1.00"
"OEM060400RN0000" "OEM060200RB0000" "2012/MAR/22"
"10:51:30"

GPS Card Model Field

Firmware Version Field

Platform Field
11 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Loading and Controlling the Application
3.1.3 Authorizing a Model with the API Option
To authorize a model with the API option enabled, contact NovAtel Customer Service to obtain the
necessary authorization code and use the AUTH command to add the code to the receiver. Refer to
the OEM6 Family Firmware Reference Manual (OM-20000129) for more information on this
command.

3.2 Loading the Application

Once the receiver is set up with the necessary model and firmware version, the application can be
loaded in to NVM on the receiver using version 1.0.134.000 or higher of the WinLoad utility. This
utility is provided as part of the API package or can be obtained from NovAtel Customer Service.

For information on using WinLoad, follow the procedure given in the OEM6 Family Installation and
Operation User Manual (OM-20000128), making adjustments for the selection of the application file,
rather than the firmware file and the absent authorization code prompt.

• The application HEX file should be selected, rather than a standard firmware HEX file

• An authorization code is not needed

3.3 Controlling the Application

The operation of the application can be controlled by using the APPLICATION command as
discussed below.

3.3.1 Starting the Application
Once the application has been loaded onto the receiver, enter the following command string to start
the application:

application start <parameter> <priority> <stack>

The values that can be entered when starting an application are described in the table below.

 Table 1: APPLICATION START Parameters

 Only one application can be loaded onto the receiver at any one time.
However, functions are provided to allow for multiple tasks running within the
application. Please see the provided oemapi.h file for more information.

Parameter Valid Values Description

<parameter> Any ulong value
Optional field to specify an input parameter for the application. If a value is
not specified, the default 0 is used

<priority>
Any long value
from
0 to 21

Optional field to specify the priority of the application in relation to system
tasks. See the API header file for details.
In order to specify the priority, a value must be entered for the
<parameter> field as well. If a value is not specified, the default 1 is
used

<stack>
Any long value
from
200 to 20000

Optional field to specify the size of the stack to be used by the application
in bytes. In order to specify the stack size, a value must be entered for both
the <parameter> and <priority> fields as well. If a value is not
specified, the default 10000 is used
12 OEM6 Family Application Programming Interface (API) User Guide Rev 2

http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000128.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000128.pdf

Loading and Controlling the Application
3.3.1.1 Auto-Start Applications

If 5 was entered for the <ComponentEnum #> field when running the DATABLK utility, the
application is set to auto-start so when the receiver is first powered, the application begins to run.

An alternate method for setting an application to automatically start is to use the SAVECONFIG
command after the application has started. When this is done, the application automatically starts
whenever the receiver is powered up, as long as the saved receiver configuration is present in
memory. However, as soon as the FRESET command is issued, the configuration is lost and the
application will not automatically start. When an application is configured to auto-start using the
method described in Section 2.1.4 on Page 8, it is not affected by the state of the receiver
configuration.

3.3.2 Stopping the Application
To stop the application, enter the following command:

application stop

This command can be used to stop either standard or auto-start applications.

3.3.3 Removing the Application
To remove the application from NVM, enter the following command:

application remove

 The application is not recoverable when removed from NVM.
It is not necessary to remove an existing application from NVM before loading a new
application.
When loading a new application, any existing application will be removed from NVM
automatically.
OEM6 Family Application Programming Interface (API) User Guide Rev 2 13

Chapter 4 Additional Information

The following sections provide additional information that may be useful when working with OEM6
applications.

4.1 Determining the Version of the Loaded Application

When an application is loaded onto the receiver, the VERSION log provides information about the
application. When an application is loaded, an additional entry is displayed in the VERSION log, with
the type field showing DB_USERAPP for a standard application or DB_USERAPPAUTO for an auto-
start application. All the parameters given in that entry apply to the application loaded on the receiver.
An example of the log with a DB_USERAPP entry is shown below.

[COM1]<VERSION COM1 0 52.0 UNKNOWN 0 50.046 004c0020 3681 45632

< 2

< GPSCARD "D2SR0GTT0A" "BFN10470121" "OEM628-1.00"
"OEM060400RN000" "OEM060200RB000" "2014/May/23" "19:45:13"

< DB_USERAPP "apiexample" "321" "" "1.2" "" "2013/Jun/06"
"17:01:51"

For information on how to capture the VERSION log or the fields it contains, refer to the OEM6 Family
Firmware Reference Manual (OM-20000129), Section 4.3 on Page 16 of this document provides
information on how some of the VERSION log fields are set by the DATABLK utility.

4.2 Logging the Application Status

A log has been created to capture the details of any application loaded onto the receiver (refer to
APPLICATIONSTATUS API Application Status Information on page 15). All formats and standard
fields, such as the header, are explained further in the OEM6 Family Firmware Reference Manual
(OM-20000129). Many of the fields are set to values entered for use by the DATABLK utility, as
described in Section 4.3 on Page 16 of this document.

 The version log reports a snapshot of the application in memory at the time
the device was powered up. Removing the application (refer to Section 3.3.3,
Removing the Application on Page 13) does not update this snapshot. So,
the version log continues to indicate the presence of the application even
though it has been removed from memory.

 The time indicated in the log header is the time when the application status
was last changed, for example, the time when the application was started or
stopped.
14 OEM6 Family Application Programming Interface (API) User Guide Rev 2

http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf
http://www.novatel.com/assets/Documents/Manuals/om-20000129.pdf

Additional Information
APPLICATIONSTATUS API Application Status Information

Log Type: Asynch Message ID: 520

Recommended Input:
LOG APPLICATIONSTATUSA

ASCII Example:
#APPLICATIONSTATUSA,COM1,0,72.5,UNKNOWN,0,8.181,00000020,3EFF,754;1
4,FALSE,00000000,00000000,"SAMPLEOEMVAPP","1.0","2006/JAN/
31","14:23:54"*77BB5E52

Field Field
Type Data Description Format Binary

Bytes
Binary
Offset

1 header Log header H 0

2 api version The version of the API that the currently loaded
firmware supports Ulong 4 H

3 running

Flag indicating whether the application is currently
running, where
0 = FALSE

1 = TRUE

Bool 4 H+4

4 base address
The base address is an address in the kernel
memory space and is not related to an actual
address accessible within the VAS

Ulong 4 H+8

5 size

This value is an over estimation, formed by
summing the various code and data areas used by
the VAS where the application is running. It is a
worst case memory usage measured in bytes

Ulong 4 H+12

6 name The name of the application Char[16] 16 H+16

7 version The version of the application Char[16] 16 H+32

8 compile date
The date the application was compiled
In the format yyyy/mmm/dd, where mmm is three
letters for the month (eg. JAN)

Char[12] 12 H+48

9 compile time
The time the application was compiled
In the format hh:mm:ss

Char[12] 12 H+60

10 xxxx 32-bit CRC (ASCII and Binary only) Hex 4 H+72

11 [CR][LF] Sentence terminator (ASCII only)
OEM6 Family Application Programming Interface (API) User Guide Rev 2 15

Additional Information
4.3 DATABLK Parameters Used in Logs

Many of the fields captured in the APPLICATIONSTATUS log and the DB_USERAPP or
DB_USERAPPAUTO entry of the VERSION log are set to the values entered for parameters used by
the DATABLK utility. The table below provides a list of these parameters and the matching log fields.
For more information about the DATABLK utility, see Appendix A.4.2, Adding Information for Loading
the Application on page 22.

 Table 2: DATABLK Parameters Used in Logs

DATABLK
Parameter

Matching Log Field

Versiona

a. Only valid for the DB_USERAPP or DB_USERAPPAUTO entry in the log.

Application Status

<Name> model name

<SNKey> psn N/A

<Version> sw version version

<Compile Date> comp date compile date

<Compile Time> comp time compile time
16 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Appendix A Green Hills Software Compiler Tools
This appendix contains steps to build the Green Hills Software (GHS) project which creates a
Dynamic Download Object (DDO). The NovAtel GNSS receiver only supports user applications in
the form of a GHS DDO. Although an ELF executable (for ARM processors) created by other tools
can be loaded onto the card, such applications will fail to run when an attempt is made to start them.

The ELF file containing the user application is converted to a relocatable S-record file and is loaded
into the receiver’s flash memory using the WinLoad utility. To start the application the receiver loads it
from flash at runtime. Once running, the application communicates with the firmware via the NovAtel
API, provided in the liboemapi.a archive file.

A.1 GHS Compiler

The specific format of the Dynamic Load Object requires the use of the GHS software tool chain for
ARM processors. For compatibility reasons, NovAtel recommends using version 2012.1 or later of
the compiler tools.

A.2 Obtaining and Installing GHS Compiler

Obtain and install the GHS compiler. Customers who do not already have the required GHS tools can
obtain them from NovAtel. You will receive a link to the NovAtel support web site to download the
tools. Follow the instructions provided in the download to install the GHS tools.

After installing the GHS compiler tools, follow the instructions to obtain and install a password from
Green Hills Software to activate the compiler. You will need to indicate you are a customer of
NovAtel, which GHS will confirm at the time of the request.

A.3 Dynamic Download Object (DDO)

A GHS Dynamic Download Object (DDO) is a self-contained application that runs within a separate
Virtual Address Space (VAS) on the NovAtel GNSS receiver. This address space is outside the
kernel address space and protection barriers exist to prevent unintentional accesses from corrupting
the operation of the receiver. When application start is invoked, a VAS is created for the
application. This VAS exists until the application stop command is issued at which point all
tasks within the VAS are halted and the VAS and everything in it are deleted.

A.3.1 Building the Dynamic Download Object
Once the compiler tools have been installed they can be used to build the user application which
produces a DDO in the form of an ELF file. A template directory structure, with an example
application, is provided to assist with the creation of a user application. The contents of the template
directory are described below. In most cases, customers need only to modify one or two of the files
besides the source code file.
17 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Appendix A Green Hills Software
A.3.1.1 Download Structure

The important folders and files are as follows:

• Folder src: contains the source files for the project. For the example application, a single
file, download_as0.cpp is provided. Additional source files can be added to this folder and
the project file updated with the additional entries (described below). One of the source
files must contain a function MainTask() which is the entry point for the application.

• Folder include: the example project has this folder in the search path for #include files.
As shipped, the folder contains the oemapi.h file, which describes the API interface.

• Folder libs: the example project searches this folder for library files. As shipped, the
folder contains the library liboemapi.a which contains the API implementation.

• File customApp.gpj: This is the GHS top level build project file. The top of this file
contains several “macro” definitions which are passed to the DATABLK utility. These
definitions can be changed to tailor the application to your needs. The lines that follow
these macro definitions should not be changed.

• File download.gpj: This is the GHS project file that transforms the executable into a VAS
DDO. This file should never require modification.

• File download_as0.gpj: This is the GHS project file that builds the application. This file
can be modified to add or change source files or libraries. Source files are added to the
end of the file. Additional libraries would be added in the compiler options section.

• File tgt/download.int: This is the Integrate file for the user application. This file contains
information regarding the memory structure of the application and the VAS. To customize
the amount of memory used by the VAS, this file needs to be modified (refer to Section
A.3.2.2 on page 20).

A.3.2 Building the Project
There are two options to build the project. The command to build the project can be invoked directly
on the command line. Alternatively, if the graphical GHS MULTI tools are available, the project can
be opened in the MULTI Project Manager and built from there. MULTI is available from Green Hills
Software at additional cost. Not all of the features available in MULTI (for example, run-time
debugging) can be used on the NovAtel Receiver due to security restrictions in how the operating
system has been set up.

To build using the command line, the following command must be invoked from the base of the
template directory gbuild –top customApp.gpj.

$ gbuild –top customApp.gpj
Building C:\builds\customerAPI\omap\customApp.gpj
Generating headers from download.int because download.time does
not exist
Compiling download_as0.cpp because download_as0.o does not exist
Linking download_as0 because it does not exist
Integrating download because it does not exist
Output from integrating download.gpj:
*
* datablk - NovAtel Inc. data block utility n
* Executable Version: 2.21
* Header Version: 2
*
Processing download.srec to ddProject.hex
Done
18 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Appendix A Green Hills Software
The result of a successful build is the file download. This is an ELF file containing the DDO. After
successfully building the DDO, the project build script invokes the DATABLK and TORSEC utilities to
prepare the file for loading onto the receiver (see Section 2.2.2 on page 9 and Appendix Adding
Information for Loading the Application, starting on page 22). The prepared file is then loaded onto
the receiver using the WinLoad utility (Section 3.2 on page 12).

To build using the MULTI Project Manager, double click on the customApp.gpj project file to open the
MULTI Project Manager. Select customApp.gpj and press F7 to launch the build process.

A.3.2.1 Memory

There are two user application memory limitations to be aware of:

• The size of the download ELF file cannot be larger than 1 MB (1048576 bytes). This
refers to the DDO file, not the ASCII .hex file.

• The size of the user application VAS cannot be larger than 1 MB (1048576 bytes)

When the user application is first started the entire ELF file is loaded to receiver memory. If the
receiver does not have enough memory to load the ELF file, or if the ELF file is larger than 1 MB, the
application will not start. An error indicating there is not enough memory is issued.

The second memory limitation is the size of the VAS. All of the memory that will be used by the user
application must be allocated up front as part of the VAS.

It is important that the size of the VAS be correct. If there is not enough memory allocated at the start,
the user application may encounter errors at runtime when it attempts to allocate additional memory
and no free memory is left. If the VAS is too large memory is wasted and in some scenarios, the
entire GNSS application may suffer degraded performance. As a safety measure, the receiver limits
the maximum VAS size to 1 MB.

The following contribute to the size of the user application VAS:

• User application text, data and bss segments

• User application heap
OEM6 Family Application Programming Interface (API) User Guide Rev 2 19

Appendix A Green Hills Software
• User application Free Memory Pool

The Free Memory Pool is memory allocated in the VAS that is used by the operating system to store
task objects, semaphores, task stacks and other operating system objects created by the user
application. The size of the Free Memory Pool is set in the download.int Integrate file (described in
the following section).

A.3.2.2 File Download.int

The Integrate file is located at tgt/download.int and contains three values of interest to the developer.
The following variables control the amount of "dynamic memory" allocated for use within the VAS and
may be adjusted to fit the application’s needs. Because the basic size of a memory page in the MMU
is 4096 bytes, all of these values should be multiples of 4096 to avoid waste (the Integrate
application will round up and issue a warning in any case). Each of these values affects the total size
of the VAS. If the VAS is too large, it may not load and no customer application will run.

• MemoryPoolSize is the size of the Free Memory Pool for the VAS

• HeapSize is the amount of memory to allocate for the heap when the VAS is created. This
space does not consume memory from the Free Memory Pool

• HeapExtensionReservedSize is the amount of virtual memory address space to reserve
contiguous to the initial heap area. Once the heap is exhausted additional memory for the
heap will automatically be allocated from unused pages in the Free Memory Pool and
assigned virtual addresses in this space. It is permissible for the heap extension size to
be 0, in which case virtual addresses used for additional heap memory may not be
contiguous with the initial heap area. The size of this potential additional heap usage
should be accounted for when calculating MemoryPoolSize

The variable StackLength sets the size of the stack for the initial task in the VAS. This is not the size
of the stack for MainTask and should not be changed. No other variables in this file should be
changed.

A.3.2.3 Guidelines For Sizing The Memory Variables

If the user application attempts to use more memory than the VAS can provide, the request will fail.

If the sum of MemoryPoolSize + HeapSize + Application Text + Application Data + Initial Stack is
larger than 1 MB the VAS will not load and the user application will not run.

By default, the amount of memory allocated for the VAS Free Memory Pool is 0.5 MB. This space
must be large enough to contain all of the stacks for tasks created by the user application, the
HeapExtensionReservedSize (assuming the heap is fully used) and any objects created by the
INTEGRITY operating system (for example, Task Control Blocks, operating system object and the
like). Each task requires one page (4096 bytes) plug 64 bytes for each operating system object it
creates.

There is a single heap area within the VAS which is shared between all tasks running in the VAS. The
default size of this heap is 128 KB, with a contiguous extension of 4 KB. These values can be
changed as required. Within the API, the message queue module allocates memory from the heap
and must be taken into account. The amount of memory required is (NumOfMessages *
(MaxMsgSize + 8))+128

None of the API calls require more than 1 K of stack space for internal automatic variables.
20 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Appendix A Green Hills Software
A.4 Creating Loadable S-Records

When loading the application onto the receiver, the S-Record format, which is described in Section
A.4.1, is used. Therefore, once the application has been built, the resulting binary ELF file must be
converted to S-Record format. The TOSREC utility is provided to complete this conversion.

A.4.1 S-Records
The S-Record format is an industry standard for encoding programs or data files in a printable form
that allows for ease of transfer between devices.

An S-Record is an ASCII character string consisting of five fields, in the format shown below.

<type><length><address><data...><checksum>

The S-Record fields all use hexadecimal format, except for the <type> field. The fields are
described in Table 3 below.

 Table 3: S-Record Fields

There are 3 types of S-Records used for OEM6 applications, as shown in Table 4 below.

 Table 4: S-Record Types

Typically, each S-Record file consists of one or more header records, followed by one or more data
records, concluded with a single end-of-file record.

A.4.1.1 Using TOSREC

The TOSREC utility is a Windows command line program. To run the application, enter the following
in a command window:

tosrec <infile>

where <infile> is the name of the file to be converted. The name of the S-Record file to be
generated can be specified using the following optional parameter:

-o <outfile>

Field Length
(Characters) Description

<type> 2 The type of S-Record, as described by Table 4

<length> 2 The number of character pairs in the record, excluding the <type>
and <length> fields

<address> 4, 6, or 8 The 2, 3 or 4-byte address at which to load the contents of the data
field in memory

<data> variable Executable code or memory loadable data

<checksum> 2 The least significant byte of the one’s complement of the sum of the
values represented by the length, the address and the data fields

Type Description

S0 Header record is used by WinLoad to determine how to load the application as described in
Section A.4.2.2 on page 23

S3 Data record

S7 End-of-file record
OEM6 Family Application Programming Interface (API) User Guide Rev 2 21

Appendix A Green Hills Software
where <outfile> is the name of the output file.

Examples of command strings to run the utility are shown below.

tosrec download

tosrec download -o output.hex

A.4.2 Adding Information for Loading the Application
The WinLoad utility is used to load the application onto the receiver and read information from the
input file in order to determine how the application should be loaded. This information is included in a
special set of S-Records placed at the beginning of the file. Once the application data has been
converted to an S-Record format, the DATABLK utility is used to add these necessary records.

A.4.2.1 Using DATABLK

The DATABLK utility is a Windows command line program. To run the application, enter the following
string in a command window:

datablk <In SREC File> <Out SREC File> <Compress> <Block #>
<ComponentEnum #> <Name> <Version> <SNKey> <Platform> <Compile Date>
<Compile Time>

Each of the parameters are described in the table below.

 Table 5: DATABLK Parameters
Parameter Valid Values Description

<In SREC File> Any File name of input file

<Out SREC File> Any File name of output file

<Compress> a Raw Specifies the application is to be loaded as is

<Block #> 2 The data block in memory in which the application
will be loaded into

<ComponentEnum #> 1 or 5
The type of application, where 1 specifies a
standard user application and 5 specifies an auto-
starting user application

<Name> 15 non-null characters or less A string indicating the name of the application

<Version> 15 non-null characters or less A string indicating the version of the application

<SNKey> 15 non-null characters or less

A string indicating the serial number or key for the
application. Can also be used to set an application
parameter. See Section 2.1.3.2 on page 8 for more
details

<Platform> 15 non-null characters or less

Indicates which hardware platform this application
is to be loaded on. This string should be the same
as the “hardware platform” returned in the
“hwversion” field of the LOGVERSION command

<Compile Date>

Any valid date in the format
yyyy/mmm/dd, where mmm
is three letters for the month
(e.g., JAN)

Optional field to specify the date the application was
compiled. If no value is provided, the computer’s
current date is used
22 OEM6 Family Application Programming Interface (API) User Guide Rev 2

Appendix A Green Hills Software
An example command string to run the utility is given below:

datablk input.hex output.hex raw 2 1 SampleApp 1.00 1234 OEM628

See Section 4.3 on page 16 for more information about how the values entered for the DATABLK
parameters are used in the receiver logs.

A.4.2.2 Records Used By WinLoad

DATABLK adds three header records that are required by the WinLoad utility when loading the
application. The records provide the following information to WinLoad:

• The target platform of the OEM6 family receiver (provided via parameters)

• The version of the application

• In which data block to load the application (block 2)

<Compile Time>
Any valid time in the format
hh:mm:ss

Optional field to specify the time the application was
compiled. If no value is provided, the computer’s
current time is used

a.Only use Raw as the value for this parameter. Compress is not a valid option for Dynamic
Download applications.

Parameter Valid Values Description
OEM6 Family Application Programming Interface (API) User Guide Rev 2 23

OM-20000140 Rev 2 June 2014

	Introduction
	1.1 Overview
	1.2 Features
	1.3 Materials Provided - API Development Kit
	1.4 Requirements to Build and Run an Application
	1.4.1 Firmware Compatibility

	Designing and Building the Application
	2.1 Designing the Application
	2.1.1 Working with the Virtual Ports
	2.1.2 Using the GPIOs
	2.1.3 Input Parameters
	2.1.4 Auto-Start Applications

	2.2 Building the Application
	2.2.1 Compile, Link and Integrate the Application
	2.2.2 Convert the Binary Executable to S-Records
	2.2.3 Adding Information for Loading the Application

	Loading and Controlling the Application
	3.1 Setting up the Receiver
	3.1.1 Determining the Current Model and Firmware Version
	3.1.2 Updating the Firmware
	3.1.3 Authorizing a Model with the API Option

	3.2 Loading the Application
	3.3 Controlling the Application
	3.3.1 Starting the Application
	3.3.2 Stopping the Application
	3.3.3 Removing the Application

	Additional Information
	4.1 Determining the Version of the Loaded Application
	4.2 Logging the Application Status
	4.3 DATABLK Parameters Used in Logs

	Green Hills Software Compiler Tools
	A.1 GHS Compiler
	A.2 Obtaining and Installing GHS Compiler
	A.3 Dynamic Download Object (DDO)
	A.3.1 Building the Dynamic Download Object
	A.3.2 Building the Project
	A.4 Creating Loadable S-Records
	A.4.1 S-Records
	A.4.2 Adding Information for Loading the Application

