APN 073:
RTK ASSIST &
RTK ASSIST PRO
RTK ASSIST

RTK ASSIST Overview

NovAtel’s RTK ASSIST™ and RTK ASSIST PRO™ empower RTK users to seamlessly operate with centimetre level accuracy during RTK correction signal outages caused by radio connectivity issues or wireless or cellular signal disruptions. RTK users can continue their operation without being impacted by signal outages, leading to increased productivity. RTK ASSIST and RTK ASSIST PRO are supported through NovAtel’s satellite-based correction services and thus do not require any local infrastructure. RTK ASSIST is currently available for OEM6® and OEM7® product lines and RTK ASSIST PRO is available on OEM7®, for eligible hardware and firmware models.

How It Works

RTK ASSIST and RTK ASSIST PRO work by using the precise GNSS correction data delivered by the geostationary (GEO) satellites1 to maintain centimetre level accuracy in the absence of RTK corrections. These corrections are received through L-Band tracking and subsequently used by the position engine to maintain centimetre level accuracy.

Figure 1: Global Coverage Map for Correction Delivery

1 GNSS correction service is provided by TerraStar.
RTK ASSIST

RTK ASSIST operates seamlessly in the background for up to twenty minutes from the onset of an RTK outage. After that, the position type will transition to the next most accurate available. Datum differences or biases are automatically compensated for when transitioning between position types. The algorithm is designed to facilitate smooth transitions during RTK outages. However, as with any carrier phase-based positioning, there is a possibility that a position jump may occur due to an incorrect ambiguity fix. The positioning solution will transition back to using RTK corrections once connection has been re-established with the correction source.

As the RTK ASSIST technology uses the precise correction data delivered via geostationary satellites, any obstructions (i.e., buildings, grain tanks, tree lines) can potentially degrade or block the satellite signals. Depending on the L-Band signal blockage duration, the position error will increase over time. If L-Band signals are lost for more than 2 minutes, RTK-level accuracies cannot be maintained and RTK ASSIST will disengage. The resulting position type will be determined by the accuracy level of the solution at the time RTK ASSIST becomes inactive.

The RTK ASSIST functionality will engage if there is L-Band tracking and the GNSS receiver has had at least one RTK fix prior to the outage.

Users can expect centimetre level accuracy during the RTK outage when using RTK ASSIST. However, the accuracy will degrade as the outage duration increases but will stabilize (approximately 4 cm RMS). If the RTK outage occurs in the first 30 minutes of operation, further degradation (approximately 20 cm RMS) may be observed.
Figure 2: Summary of How RTK ASSIST Works

Figure 2: Summary of How RTK ASSIST Works shows the basic flow structure that RTK ASSIST will follow. If an outage occurs while in RTK mode, RTK ASSIST will engage. At this point, if RTK returns before the 20 minute time period, RTK will resume as normal. However, if RTK corrections do not return, the next most accurate position type will be used (SBAS, PSRDiff etc.) until corrections are re-established.

RTK ASSIST PRO

Similar to RTK ASSIST, RTK ASSIST PRO will operate seamlessly in the background, however without limit after the onset of an RTK outage. RTK ASSIST PRO leverages multi constellation support to provide highly accurate and reliable positioning in RTK correction outages.

RTK ASSIST PRO also provides standalone centimetre level positioning in areas where RTK is no longer practical or beneficial. Standalone positioning is provided at the TerraStar-C PRO level. When operating without an initial RTK fix the user may require nudging to handle datum offsets. Please refer to APN-061 for information on TerraStar-C PRO.
Operating Modes

RTK ASSIST operates in two different modes: Coast and Full Assist.

Coast:

Coast is available as soon as the RTK ASSIST corrections are received from the L-Band satellite. In this position mode, error growth during the RTK outage is slightly greater when compared to Full Assist mode. When in this mode, RTK will not resume following a full GNSS signal outage until after RTK corrections are restored.

Full Assist:

Full assist provides the lowest position error growth during RTK correction outages and makes it possible for RTK to resume even if there are complete GNSS signal outages during the RTK ASSIST period. This mode requires a convergence period of approximately 30 minutes from navigation start.

Requirements for using RTK ASSIST & RTK ASSIST PRO

The RTK ASSIST functionality requires the receiver to be enabled for both RTK positioning and L-Band tracking. These requirements can be checked against the model of the receiver and determine that options for L-Band and RTK are both enabled.

OEM6

The firmware requirement for RTK ASSIST is 6.710 (OEM060710RN0000) or later.

Based on the OEM6 model structure, firmware Option 4 must be RTK (i.e., “R”), the firmware Option 2 must be “2” or higher, and the firmware Option 3 should be “L” or “J”. For example:

- OEM628-D2L-R0G-TT0
- OEM628-D2J-RPR-TTN
- SM6L-D2L-RPG-0T0
The “L” or “J” option enables L-Band tracking, and the “R” option allows the receiver to use RTK ASSIST service. However, the user must configure the receiver to track the L-Band signal (see Enable L-Band Tracking) and a RTK ASSIST subscription must be purchased and activated before the receiver will start using the corrections and providing RTK ASSIST functionality.

To use the RTK ASSIST service, the channel configuration options for dual-frequency (L1 & L2) tracking must be included in the model, as well a minimum of GPS+GLONASS tracking. To allow for this, the first two firmware options must be a minimum of “D” and “2” as shown in the examples and Figure 3 above.

OEM7

The firmware requirements for RTK ASSIST is 7.02 (OM7MR0200RN0000) or later.

The firmware requirements for RTK ASSIST PRO on OEM7 is 7.05 (OM7MR0500RN0000) or later.

Dual frequency is represented by the “D” or “F” in the 2nd character. The “R” model is required for RTK in the 4th character. As stated above, GPS + GLONASS tracking should be enabled for optimal performance of the system.

- **OEM729-DFN-RNN-CBN**

![Figure 4: OEM7 Model Structure and Firmware Model Options for RTK ASSIST](image-url)
RTK ASSIST & RTK ASSIST PRO Subscriptions

To purchase a RTK ASSIST subscription, contact your NovAtel dealer or sales office\(^2\). NovAtel Customer Support can provide free 3 or 5-day trial RTK ASSIST subscriptions for test and demonstration purposes\(^3\). Users cannot subscribe to both RTK ASSIST and TerraStar subscriptions simultaneously.

The receiver’s NovAtel Product Serial Number (PSN) or TerraStar Product Activation Code (PAC) is needed to obtain a subscription. Before contacting your NovAtel sales office, obtain the PSN for the receiver you wish to activate using the command “LOG VERSION”.

To verify an RTK ASSIST subscription, users can use the TERRASTARINFO log as demonstrated below:

```
LOG TERRASTARINFO
```

```
< TERRASTARINFO COM1 0 87.0 FINESTEERING 1919 247530.423 02000020 a7ce 32768
"QU075:2185:6222" PAYG 00000800 0 0 0 LOCAL_AREA 51.11639 -114.03806 2
```

<table>
<thead>
<tr>
<th>Bits</th>
<th>Mask</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8</td>
<td>0x000001FF</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>0x00000200</td>
<td>TerraStar-C</td>
</tr>
<tr>
<td>10</td>
<td>0x00000400</td>
<td>TerraStar-L</td>
</tr>
<tr>
<td>11</td>
<td>0x00000800</td>
<td>RTK ASSIST</td>
</tr>
<tr>
<td>12</td>
<td>0x00001000</td>
<td>RTK ASSIST PRO</td>
</tr>
<tr>
<td>13</td>
<td>0x00002000</td>
<td>TerraStar-C PRO</td>
</tr>
<tr>
<td>12-31</td>
<td>0xFFFFF000</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 1: TERRASTARINFO bit mask description

The bit mask (0x00000800) indicates that the receiver has a TerraStar RTK ASSIST service.

Verifying RTK ASSIST

Users can check the status of their RTK ASSIST solution by looking at the RTKASSISTSTATUS log\(^4\)

```
LOG RTKASSISTSTATUS
```


\(^3\) Contact support@novatel.com for more details. Maximum of 3 test subscriptions will be provided per receiver.

\(^4\) Users can find the relevant logs and commands in the user manual for their product.

OEM6: https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000129/om-20000129.pdf

OEM7: http://docs.novatel.com/OEM7/Content/Home.htm
ACTIVE: The active keyword indicates that RTK ASSIST is engaged and currently providing positioning. This field will report INACTIVE when not being used.

1085.0: This is the time remaining (seconds) in the RTK ASSIST mode before transitioning to the next most accurate available positioning mode. The maximum is 20 minutes (1200 seconds) for RTK ASSIST, and unlimited for RTK ASSIST PRO.

21.0: The corrections age reported in the RTKASSISTSTATUS log should typically be below 30 seconds. If the age exceeds this value, then L-Band tracking is likely being degraded. The most likely cause of degraded L-Band tracking is obstructions between the antenna and the L-Band satellite.

An alternative way to see if RTK ASSIST is active for users using the BESTPOS log is to look at Field #20 (Extended Solution Status) to see if bit four is active.

Enable L-Band Tracking

To enable L-Band tracking, the “ASSIGNLBANDBEAM” command is used. The factory default setting for “ASSIGNLBANDBEAM” is “IDLE”, which means that the receiver will not track an L-Band signal unless configured to do so.

To enable L-Band tracking, the “AUTO” setting is recommended in most cases. Specifically:

![Figure 5: BESTPOS Extended Solution Status](image)
ASSIGNLBANDBEAM AUTO

The auto setting allows the GNSS receiver to automatically track the signal from the highest elevation TerraStar satellite for the best performance. To determine which TerraStar signal is the best to use in a particular location, the receiver must have a position solution available.

To verify the L-Band tracking status, the “LBANDTRACKSTAT” log can be used. For example:

```
<LBANDTRACKSTAT COM1 0 80.5 FINESTEERING 1835 140789.000 00000020 29fd 13306
<       1
<       "98W" 1539902500 1200 974c 00c2 0 345.395 42.398 3.5073 71580.844 1363392 1168
1085 173150784 136010 0.0038
```

This log reports the L-Band tracking status of the TerraStar signal. Some helpful fields are highlighted above and described below:

- **98W**: This is the name of the TerraStar beam or transmitting satellite being tracked.
- **00c2**: This is the “Tracking Status Word”. A tracking status of “00c2” indicates that the receiver is tracking and locked onto the TerraStar signal.
- **42.398**: This is the C/No or “Carrier to Noise Density Ratio” (in dB-Hz). The C/No is typically about 40-45 dB-Hz in ideal conditions. A low C/No can result in missed corrections and correspondingly degraded performance.
- **71580.44**: This is the “Lock Time” (in seconds). This field can be monitored to ensure that the L-Band signal is being tracked continuously without any loss of lock.

While the TerraStar signal can be tracked even without a subscription, the receiver will not decode and use the TerraStar service data until a valid subscription has been activated.
Configuration for RTK ASSIST

To enable RTK ASSIST on a receiver with a valid model and subscription, use the commands provided below.

LOG TERRASTARINFO (Indicates a valid RTK ASSIST subscription)

ASSIGNLBANDBEAM AUTO (Enables L-Band tracking)

RTKASSIST ENABLE (On by default – users can verify by logging the command)

RTKASSISTTIMEOUT SUBSCRIPTION_LIMIT (Use the maximum amount of time possible)

LOG RTKASSISTSTATUS (Users can verify that RTKASSIST is working when there is no RTK correction signal)

Logs and Commands

All logs and commands described below can be found in documentation for OEM6 and OEM7 in their respective firmware manual

OEM6:
https://hexagondownloads.blob.core.windows.net/public/Novatel/assets/Documents/Manuals/om-20000129/om-20000129.pdf

OEM7: http://docs.novatel.com/OEM7/Content/Home.htm
Where to go for Support

To help answer questions and/or diagnose any technical issues that may occur, the NovAtel Support website is a first resource: www.novatel.com/support/

Remaining questions or issues, including requests for test subscriptions or activation resends, can be directed to NovAtel Support by visiting https://novatel.com/contactus/contact-support. To enable the online form and submit a ticket, fill the 4 fields and press Submit Form button.

However, before contacting Support, it is helpful to collect data from the receiver to help investigate and diagnose any performance-related issues. In those cases, if possible, collect the following list of logs (the LOG command with the recommended trigger and data rate is included):

- LOG VERSIONA ONCE
- LOG RXSTATUSA ONCHANGED
- LOG RAWEPHEMB ONCHANGED
- LOG ALMANACB ONCHANGED
- LOG IONUTCB ONCHANGED
- LOG GLORAWEPHEMB ONCHANGED
- LOG GLORAWALMB ONCHANGED
- LOG GLOCLOCKB ONCHANGED
- LOG RANGEB ONTIME 1
- LOG BESTPOSB ONTIME 1
- LOG LBANDTRACKSTATB ONTIME 1
- LOG TERRASTARINFOA ONCHANGED
- LOG TERRASTARSTATUSA ONCHANGED
- LOG RXCONFIGA ONCE
- LOG RTKASSISTSTATUSA ONTIME 1

The data described above can be collected using a terminal program that supports binary data logging, or NovAtel’s CONNECT utility can be downloaded and installed from the NovAtel website: www.novatel.com/support/info/documents/809.